Performance Analysis of CNN (Convolutional Neural Network) in Nominal Classification of Rupiah Emissions 2022
DOI:
https://doi.org/10.30865/ijics.v9i2.8903Keywords:
CNN, Transfer Learning, Image Classification, Rupiah Notes, Deep LearningAbstract
This study aims to analyze the performance of Convolutional Neural Network (CNN) algorithm in classifying the nominal of Rupiah banknotes issued in 2022. Three test models are developed, namely two CNN architectures with different optimizers (Adam and RMSprop), and one transfer learning model using VGG16. The dataset used consists of 1,848 banknote images of seven denominations: Rp1,000, Rp2,000, Rp5,000, Rp10,000, Rp20,000, Rp50,000, and Rp100,000. The data was collected using a smartphone camera and processed through augmentation, normalization, and classification stages. The model was evaluated using accuracy, precision, recall, and F1-score metrics. The results show that CNN with Adam's optimizer achieves a validation accuracy of 98.97%, while CNN with RMSprop reaches 99.59%. Meanwhile, the VGG16 model achieved perfect validation accuracy of 100%, with precision, recall, and F1-score values of 1.00 each. These results show that the transfer learning approach provides the best performance compared to conventional CNN models. This research supports the development of an accurate and efficient banknote recognition automation system for digital finance applications.
References
A. Prima, D. B. Santoso, and L. Nurpulaela, “Deteksi Otomatis Nominal Uang Kertas Rupiah Untuk Tunanetra Menggunakan Algoritma Arsitektur SSD MobileNetV3,” Teknokom, vol. 6, no. 2, pp. 151–159, 2022, doi: 10.31943/teknokom.v6i2.166.
D. Khairu and others, “Klasifikasi Jenis Uang Kertas Menggunakan Convolutional Neural Network,” vol. 2, no. 2, pp. 658–668, 2025.
Z. Sitorus, F. Kurniawan, E. Hariyanto, and S. Afrizal, “Decision Support System Analysis as a Recommendation for the Program Keluarga Harapan (PKH) Using a Decision Table in Pematang Serai Village,” Bull. Inf. Technol., vol. 5, no. 3, pp. 203–210, 2024, doi: 10.47065/bit.v5i2.1281.
M. Sunjaya, Z. Sitorus, Khairul, M. Iqbal, and A. P. U. Siahaan, “Analysis of Machine Learning Approaches to Determine Online Shopping Ratings Using Naïve Bayes and SVM,” Int. J. Comput. Sci. Math. Eng., vol. 3, no. 1, pp. 7–16, 2024, doi: 10.61306/ijecom.v3i1.60.
Z. Sitorus, M. Saputra, S. N. Sofyan, and Susilawati, “Sentiment Analysis of Indonesian Community Towards Electric Motorcycles on Twitter Using Orange Data Mining,” INFOTECH J., vol. 10, no. 1, pp. 108–113, 2024, doi: 10.31949/infotech.v10i1.9374.
A. N. Saputra, H. H. Handayani, C. E. Sukmawati, and A. M. Siregar, “Model Klasifikasi Nominal Mata Uang Kertas Republik Indonesia Menggunakan Convolutional Neural Network,” vol. 6, no. 1, pp. 176–184, 2024, doi: 10.47065/josh.v6i1.5927.
A. Siregar, L. Marlina, M. Iqbal, and others, “Analysis of Naive Bayes Algorithm and C4.5 Algorithm in Selecting Types of UMKM Products in BBPSDMP Kominfo Medan,” 2024.
M. Iqbal and S. Efendi, “Data-Driven Approach for Credit Risk Analysis Using C4.5 Algorithm,” ComTech Comput. Math. Eng. Appl., vol. 14, no. 1, pp. 11–20, 2023, doi: 10.21512/comtech.v14i1.8243.
N. F. Purnadi, I. Jaya, and M. Iqbal, “Detection and Identification of Red Snapper (Lutjanus gibbus and Lutjanus malabaricus) and Grouper (Plectropomus leopardus and Plectropomus maculatus) with Deep Learning,” in IOP Conference Series: Earth and Environmental Science, 2023. doi: 10.1088/1755-1315/1251/1/012043.
A. E. Rewina, S. Sulistyowati, M. Kurniawan, M. D. N, and S. F. Yunanda, “Penerapan Metode CNN (Convolutional Neural Network) dalam Mengklasifikasi Uang Kertas dan Uang Logam,” TIN Terap. Inf. Nusant., vol. 4, no. 12, pp. 778–785, May 2024, doi: 10.47065/tin.v4i12.5128.
B. A. Sadewa and Y. Yamasari, “Implementasi Deep Transfer Learning untuk Klasifikasi Nominal Uang Kertas Rupiah,” J. Informatics Comput. Sci., vol. 5, no. 4, pp. 543–551, 2024, doi: 10.26740/jinacs.v5n04.p543-551.
R. I. Agustin, J. Indra, A. Fauzi, and R. N. U. R. Hijriyya, “Klasifikasi Pecahan Uang Kertas Rupiah Menggunakan Transfer Learning dengan Model MobileNetV2,” vol. 9, pp. 242–250, 2024.
A. Hermawan, L. Lianata, Junaedi, and A. R. K. Maranto, “Implementasi Machine Learning Sebagai Pengenal Nominal Uang Rupiah dengan Metode YOLOv3,” SATIN - Sains dan Teknol. Inf., vol. 8, no. 1, pp. 12–22, 2022, doi: 10.33372/stn.v8i1.816.
A. P. Nandika, M. Imanullah, A. Wijaya, D. Sunardi, and U. M. Bengkulu, “Deteksi Kondisi Uang Bagus Dan Rusak Dengan Pengolahan Citra Digital Berbasis Convolutional Neural Network (CNN),” vol. 21, no. 1, pp. 340–348, 2025.
P. Harsani, M. Muhammad, and T. P. Negara, “Identifikasi Citra untuk Membedakan Uang Asli dan Palsu Menggunakan Algoritma Convolutional Neural Network (CNN),” vol. 13, no. 2, pp. 328–337, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fajar Sahputra, Zulham Sitorus, Muhammad Iqbal, Leni Marlina, Darmeli Nasution

This work is licensed under a Creative Commons Attribution 4.0 International License.


