Artificial Intelligence Analysis of Recommendations for Granting Business Licenses to Determine the Priority of Business Supervision and Control Using the DBSCAN Method (Case Study: DPMPTSP Langkat Regency)

Authors

  • Suhar diansyah Panca Budi University of Development
  • Zulham Sitorus Panca Budi University of Development
  • Muhammad Iqbal Panca Budi University of Development

DOI:

https://doi.org/10.30865/ijics.v9i2.8900

Keywords:

DBSCAN, Business Supervision, Clustering, Data Mining, Licensing

Abstract

In facing the challenges of limited resources and business complexity, the Investment and One-Stop Integrated Services Office (DPMPTSP) of Langkat Regency requires a data-driven approach to determine priorities for business supervision and enforcement. This study applies the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm to cluster business entities based on three main parameters: risk level, business scale, and licensing status. Secondary data from 3,748 companies were collected, processed through label encoding and normalization, and analyzed in a three-dimensional space (X1_Risk, X2_Scale, X3_License). The clustering results revealed the formation of clusters and a Silhouette Score value, indicating optimal cluster structure and separation between groups. Each cluster was interpreted as a representation of recommendation categories such as Routine Monitoring and Evaluation, Intensive Monitoring and Evaluation, Administrative Warning, Temporary Operational Suspension, and Permanent Operational Termination. The resulting visualizations enhanced the understanding of spatial mapping and clustering patterns comprehensively. This demonstrates that DBSCAN is effective as a decision-support tool for automated and objective priority mapping in business supervision, and capable of detecting business entities that deviate from general norms (outliers). This approach significantly contributes to improving the efficiency and accuracy of decision-making in business license supervision and enforcement at the regional level.

References

S. N. Girfita, W. Siswanti, and E. Altiarika, “Pemanfaatan Teknologi Artificial Intelligence (AI) Dalam Digitalisasi UMKM Di Desa Namang,” Jurnal Pengabdian kepada Masyarakat Nusantara (JPkMN), vol. Vol. 5 No. 4, pp. 5609–5615, Oct. 2024, Accessed: Jul. 01, 2025. [Online]. Available: https://ejournal.sisfokomtek.org/index.php/jpkm/article/download/4579/2899/33161

Z. Sitorus, Ganefri, and Refdinal, “Development of Deeper Learning Cycle-Project Based Learning Model Based on Resource Sharing in Artificial Neural Network Courses,” International Journal of Recent Technology and Engineering (IJRTE), vol. Volume-8, no. Issue-5, pp. 1698–1702, Jan. 2020, Accessed: Jul. 02, 2025. [Online]. Available: https://www.researchgate.net/profile/Zulham-Sitorus-2/publication/354986730_International_Journal_of_Recent_Technology_and_Engineering_IJRTE/links/6156db2d61a8f46670910e34/International-Journal-of-Recent-Technology-and-Engineering-IJRTE.pdf

R. S. Lisudatu, M. Marchelin, and L. K. Wibisono, “Klasifikasi UMKM Berdasarkan Kinerja Keuangan Menggunakan Algoritma K-Means Clustering,” Jurnal Bisnis Mahasiswa, vol. 5, no. 2, pp. 891–900, Mar. 2025, doi: 10.60036/JBM.554.

L. N. I. Fitriana and Rohmaniyah, “Penaksiran Laba Pada Akuntansi UMKM Via Online di Kabupaten Sumenep,” AKUA: Jurnal Akuntansi dan Keuangan, vol. 1, no. 2, pp. 178–185, Apr. 2022, doi: 10.54259/AKUA.V1I2.613.

A. I. Zalukhu and M. Iqbal, “Analysis of Product Demand Prediction Using Decision Tree on Sales Data of Ceria Toys Store,” Journal Of Data Science , vol. 3, no. 01, pp. 10–22, Mar. 2025, doi: 10.58471/JDS.V3I01.6458.

A. I. Zalukhu, D. Sartika, and S. Wahyuni, “Penerapan Algoritma Apriori untuk Optimasi Strategi Penjualan Berdasarkan Analisis Pola Pembelian di Torsa Cafe,” Bulletin of Information Technology (BIT), vol. 5, no. 4, pp. 295–304, Dec. 2024, doi: 10.47065/BIT.V5I4.1715.

A. I. Zalukhu, M. Iqbal, and D. Nasution, “ANALISIS DATA MINING DALAM PENGELOLAAN PERSEDIAAN STOK DENGAN ALGORITMA RANDOM FOREST DAN APRIORI (STUDI KASUS: TOKO CERIA BABYSHOP),” JOURNAL OF SCIENCE AND SOCIAL RESEARCH, vol. 8, no. 3, pp. 3396–3405, Jun. 2025, doi: 10.54314/JSSR.V8I3.3544.

Z. Sitorus, I. Syahputra, C. I. Angkat, and D. Sartika, “Implementation of K-Means Clustering for Inventory Projection,” International Journal of Science, Technology & Management, vol. 5, no. 3, pp. 673–678, May 2024, doi: 10.46729/IJSTM.V5I3.856.

Suhardiansyah and M. Iqbal, “Optimization of Kaayana Store Inventory through Transaction Pattern Analysis Using the Apriori Algorithm,” Journal Of Data Science , vol. 3, no. 01, pp. 1–9, Feb. 2025, doi: 10.58471/JDS.V3I01.6398.

D. Sartika, M. Iqbal, and Z. Sitorus, “Analisis Algoritma Exponensial Smoothing dan K-Means untuk Optimal-isasi Penerimaan Mahasiswa Baru di Universitas Haji Sumatera Utara,” Jurnal Multimedia dan Teknologi Informasi (Jatilima), vol. 7, no. 02, pp. 1–10, Apr. 2025, doi: 10.54209/JATILIMA.V7I02.1269.

S. Simamora, M. Iqbal, A. P. U. Siahaan, K. Khairul, and Z. Sitorus, “Comparison of K-Means and Self Organizing Map Algorithms for Ground Acceleration Clustering,” Sinkron : jurnal dan penelitian teknik informatika, vol. 8, no. 4, pp. 2345–2353, Oct. 2024, doi: 10.33395/SINKRON.V8I4.14120.

A. Fitri, N. Masruriyah, C. Emilia, S. Budi, and A. Dermawan, “Memahami Data Mining dengan Python: Implementasi Praktis,” Eureka Media Aksara, Mar. 2024, Accessed: Jun. 26, 2025. [Online]. Available: https://repository.penerbiteureka.com/publications/568010/

N. Q. Rahmawati, “IMPLEMENTASI DATA MINING TERHADAP DATA MINAT MAHASISWA MENGGUNAKAN METODE APRIORI,” Jurnal Teknologi Kimia Unimal, vol. 13, no. 2, pp. 215–228, Nov. 2024, doi: 10.29103/JTKU.V13I2.19563.

T. D. Saribu, M. S. Wahyuni, and S. F. Rezky, “Data Mining Dalam Menentukan Pola Penjualan Barang Menggunakan Algoritma Apriori,” Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), vol. 3, no. 2, pp. 183–190, Mar. 2024, doi: 10.53513/JURSI.V3I2.6145.

R. R. (Randi) Putra and C. (Cendra) Wadisman, “Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K Means,” Intecoms, vol. 1, no. 1, pp. 72–77, Mar. 2018, doi: 10.31539/INTECOMS.V1I1.141.

A. O. S. Ayu and M. Iqbal, “Analisis Data Mining Terhadap Data Faktor Perceraian Di Sumatera Utara Dengan Metode K-Means Clusstering,” Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), vol. 4, no. 1, pp. 214–221, Jan. 2025, doi: 10.53513/JURSI.V4I1.10671.

A. Nur et al., “Implementasi Perbandingan Algoritma k-Means dan DB-Scan Pada Beban Listrik Rumah Tangga,” INTEGER: Journal of Information Technology, vol. 10, no. 1, Mar. 2025, doi: 10.31284/J.INTEGER.2024.V10I1.7479.

M. F. Rizki and F. Sulianta, “Analisis Klasterisasi Data Peserta Asuransi PT Xyz Menggunakan Metode Denisty-Based Spatial Clustering of Applications with Noise (DBSCAN),” Jurnal Algoritma, vol. 22, no. 1, pp. 993–1001, May 2025, doi: 10.33364/ALGORITMA/V.22-1.2417.

N. A. Permatasari, Y. H. Chrisnanto, and A. K. Ningsi, “Segmentasi Kasus Data Kematian Covid 19 Di Jawa BaratMenggunakan Algoritma DBSCAN,” International Journal of Engineering, Economic, Social Politic and Government , vol. Vol. 1, No. 4, 2023, Accessed: Jul. 01, 2025. [Online]. Available: https://ijespgjournal.org/index.php/ijespg/article/view/78/66

Risman, Syaripuddin, and Suyitno, “IMPLEMENTASI METODE DBSCAN PADA PENGELOMPOKAN KABUPATEN/KOTA DI PULAU KALIMANTAN BERDASARKAN INDIKATOR KESEJAHTERAAN RAKYAT,” Prosiding Seminar Nasional Matematika dan Statistika, vol. 1, pp. 22–28, May 2019, Accessed: Jul. 01, 2025. [Online]. Available: https://jurnal.fmipa.unmul.ac.id/index.php/SNMSA/article/view/522

S. Agustian Hudjimartsu, T. Aurilia Viona, H. Sharfina, and Yani, “Optimasi Parameter Algoritma DBSCAN untuk Mendeteksi Titik Panas Kebakaran Hutan dan Lahan,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 9, no. 3, pp. 355–361, Dec. 2023, doi: 10.26418/JP.V9I3.61714.

Downloads

Published

2025-07-23

How to Cite

diansyah, S., Sitorus, Z., & Iqbal, M. (2025). Artificial Intelligence Analysis of Recommendations for Granting Business Licenses to Determine the Priority of Business Supervision and Control Using the DBSCAN Method (Case Study: DPMPTSP Langkat Regency). The IJICS (International Journal of Informatics and Computer Science), 9(2), 60–71. https://doi.org/10.30865/ijics.v9i2.8900

Issue

Section

Articles