Implementasi Deep Neural Network untuk Prediksi Harga Saham PT Bank Central Asia Tbk

Muhammad Rakha Almasah, Wahyu Aji Eko Prabowo

Abstract


Stock price prediction is one of the main challenges in financial market analysis. This study develops a Deep Neural Network (DNN) model using TensorFlow to predict the stock price of PT Bank Central Asia Tbk (BBCA) based on historical stock price data, the Jakarta Composite Index (IHSG), and the USD/IDR exchange rate. The model is optimized through hyperparameter tuning using KerasTuner with the Hyperband method, allowing for more efficient exploration of hyperparameter combinations. The tuning process yielded the best model configuration with a learning rate of 0.001269, four hidden layers, and the application of Batch Normalization, L2 kernel regularization, and dropout in each hidden layer.The model was evaluated using various batch sizes (4, 16, 32, 64, and 128) with Mean Squared Error (MSE) and Mean Absolute Error (MAE) as performance metrics. The results show that batch size 128 provides the best performance, with MSE of 0.0094 and MAE of 0.0490 on the test data, indicating high accuracy and good generalization on unseen data. The best model was then implemented as an API using Flask, deployed to Google Cloud Run, and integrated with a Flutter-based mobile application. Testing confirmed that the API can handle requests quickly using TensorFlow and produce accurate predictions.Thus, this study successfully developed a DNN-based BBCA stock price prediction system that can be applied to data-driven investment decision-making.


Keywords


Deep Neural Network; TensorFlow; Hyperparameter Tuning; Stock Price Prediction; KerasTuner; Cloud Run; Flutter

Full Text:

PDF

References


M. F. Mahfuzh and R. V. Yuliantari, “Analisis Penerapan Artificial Neural Network Algoritma Propagasi Balik untuk Meramalkan Harga Saham pada Bursa Efek Indonesia,” J. Appl. Electr. Eng., vol. 6, no. 1, pp. 1–3, 2022, doi: 10.30871/jaee.v6i1.3814.

M. Imam and N. Mursidah, “Analisis Pengaruh Price Earning Ratio dan Earning Per Share terhadap Return Saham pada Sub Sektor Property and Real Estate yang Terdaftar di BEI,” Borneo Student Res., vol. 2, no. 2, pp. 1460–1468, 2021, [Online]. Available: https://journals.umkt.ac.id/index.php/bsr/article/view/1959

D. Eko Waluyo et al., “Implementasi Algoritma Regresi pada Machine Learning untuk Prediksi Indeks Harga Saham Gabungan,” Univ. Dian Nuswantoro, Semarang Jln. Imam Bonjol, vol. 9, no. 1, pp. 12–17, 2024.

K. S. Dewi, “Pengaruh Inflasi, Suku Bunga Sbi , Dan Kurs Terhadap Indeks Harga Saham Gabungan,” J. Akuntansi, Keuangan, Pajak dan Inf., vol. 2, no. 2, pp. 160–180, 2022, doi: 10.32509/jakpi.v2i2.2474.

S. Soewignjo, Sediono, M. F. F. Mardianto, and E. Pusporani, “Prediksi Harga Saham Bank BCA (BBCA) Pasca Stock Split dengan Artificial Neural Network dengan Algoritma Backpropagation,” G-Tech J. Teknol. Terap., vol. 7, no. 4, pp. 1683–1693, 2023, doi: 10.33379/gtech.v7i4.3363.

I. G. A. D. & N. P. B. Arlita, “Stock Split Dan Return Saham (Studi Pada PT. Bank Central Asia),” J. Innov. Res. Knowl., vol. 1, no. 8, pp. 689–694, 2022.

R. A. Fahrezi, M. Y. Wijaya, and N. Fitriyati, “Prediksi Harga Penutupan Saham Bank Central Asia: Implementasi Algoritma Long Short-Term Memory Dan Perbandingannya Dengan Support Vector Machine,” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 5, no. 1, pp. 452–464, 2024, doi: 10.46306/lb.v5i1.582.

K. Prayogi, W. Gata, and D. P. Kussanti, “Prediksi Harga Saham Bank Central Asia Menggunakan Algoritma Deep Learning GRU,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 13, no. 1, p. 647, 2024, doi: 10.35889/jutisi.v13i1.1910.

A. Rosyd, A. Irma Purnamasari, and I. Ali, “Penerapan Metode Long Short Term Memory (Lstm) Dalam Memprediksi Harga Saham Pt Bank Central Asia,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 501–506, 2024, doi: 10.36040/jati.v8i1.8440.

R. Abdi, A. Rust, and T. S. Hogue, “Development of a Multilayer Deep Neural Network Model for Predicting Hourly River Water Temperature From Meteorological Data,” Front. Environ. Sci., vol. 9, no. September, pp. 1–13, 2021, doi: 10.3389/fenvs.2021.738322.

Y. Yu, “LSTM-Based Time Series Prediction Model : A Case Study with YFinance Stock Data,” vol. 03015, pp. 1–5, 2025.

S. Molin, Hands-On Data Analysis with Pandas. 2021. [Online]. Available: https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition

G. Huang, “Missing data filling method based on linear interpolation and lightgbm,” J. Phys. Conf. Ser., vol. 1754, no. 1, 2021, doi: 10.1088/1742-6596/1754/1/012187.

S. P. Choy et al., “Systematic review of deep learning image analyses for the diagnosis and monitoring of skin disease,” npj Digit. Med., vol. 6, no. 1, pp. 1–11, 2023, doi: 10.1038/s41746-023-00914-8.

L. B. V. de Amorim, G. D. C. Cavalcanti, and R. M. O. Cruz, “The choice of scaling technique matters for classification performance,” Appl. Soft Comput., vol. 133, pp. 1–37, 2023, doi: 10.1016/j.asoc.2022.109924.

O. A. Montesinos López, A. Montesinos López, and J. Crossa, Multivariate Statistical Machine Learning Methods for Genomic Prediction. 2022. doi: 10.1007/978-3-030-89010-0.

A. R. Khan, A. T. Khan, M. Salik, and S. Bakhsh, “An Optimally Configured HP-GRU Model Using Hyperband for The Control of Wall Following Robot,” Int. J. Robot. Control Syst., vol. 1, no. 1, pp. 66–74, 2021, doi: 10.31763/ijrcs.v1i1.281.

A. D. Jagtap and G. E. Karniadakis, “How Important Are Activation Functions in Regression and Classification? a Survey, Performance Comparison, and Future Directions,” J. Mach. Learn. Model. Comput., vol. 4, no. 1, pp. 21–75, 2023, doi: 10.1615/jmachlearnmodelcomput.2023047367.

X. Jiang and C. Xu, “Deep Learning and Machine Learning with Grid Search to Predict Later Occurrence of Breast Cancer Metastasis Using Clinical Data,” J. Clin. Med., vol. 11, no. 19, 2022, doi: 10.3390/jcm11195772.

Y. Kim and P. Panda, “Revisiting Batch Normalization for Training Low-Latency Deep Spiking Neural Networks From Scratch,” Front. Neurosci., vol. 15, no. December, pp. 1–13, 2021, doi: 10.3389/fnins.2021.773954.

S. Khullar and N. Singh, “Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation,” Environ. Sci. Pollut. Res., vol. 29, no. 9, pp. 12875–12889, 2022, doi: 10.1007/s11356-021-13875-w.

P. Khatiwada and P. Dhakal, “Evaluating Serverless Machine Learning Performance on Google Cloud Run 1,” arXiv Prepr. arXiv2406.16250, 2024.

T. S. Gouvêa et al., “Interactive Machine Learning Solutions for Acoustic Monitoring of Animal Wildlife in Biosphere Reserves,” IJCAI Int. Jt. Conf. Artif. Intell., vol. 2023-August, pp. 6405–6413, 2023, doi: 10.24963/ijcai.2023/711.

O. M. A. AL-atraqchi, “A Proposed Model for Build a Secure Restful API to Connect between Server Side and Mobile Application Using Laravel Framework with Flutter Toolkits,” Cihan Univ. Sci. J., vol. 6, no. 2, pp. 28–35, 2022, doi: 10.24086/cuesj.v6n2y2022.pp28-35.




DOI: https://doi.org/10.30865/jurikom.v12i2.8544

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Muhammad Rakha Almasah, Wahyu Aji Eko Prabowo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JURIKOM (Jurnal Riset Komputer) 
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : lppm.ubd@gmail.com