Sentiment Analysis of Youtube Comments on Indonesian Presidential Candidates in 2024 using Naïve Bayes Classifier
Abstract
The 2024 Indonesian presidential election is one of the most talked about topics on various social media platforms, including YouTube. The comments that appear on political-themed videos can reflect public opinion towards presidential candidates. This research aims to conduct sentiment analysis of YouTube comments related to Indonesian presidential candidates in 2024 using the Naïve Bayes Classifier method. This method was chosen due to its ability to classify text data effectively and efficiently. Data was collected from a number of relevant Kompas tv videos on YouTube, then text preprocessing stages such as data cleaning, tokenization, and stemming were performed. Next, the data was classified into three sentiment categories, namely positive, negative, and neutral. The research shows that the Naïve Bayes model is able to classify sentiment with sufficient accuracy. This finding can provide an overview of public perceptions of each presidential candidate as well as input for interested parties in the fields of politics and public communication. The results of this study show that the naïve bayes classifier algorithm can analyze with an accuracy of 61 % in the evaluation process using confusion matrix. The results of this study indicate that the naïve bayes classifier algorithm can be an effective alternative for analyzing the sentiment of YouTube comments on presidential candidates.
Keywords
Full Text:
PDFReferences
A. Y. Simanjuntak, I. S. S. Simatupang, and Anita, “Implementasi Data Mining Menggunakan Metode Naïve Bayes Classifier Untuk Data Kenaikan Pangkat Dinas,” J. Sci. Soc. Res., vol. 4307, no. 1, pp. 85–91, 2022.
Rayuwati, Husna Gemasih, and Irma Nizar, “IMPLEMENTASI AlGORITMA NAIVE BAYES UNTUK MEMPREDIKSI TINGKAT PENYEBARAN COVID,” Jural Ris. Rumpun Ilmu Tek., vol. 1, no. 1, pp. 38–46, 2022, doi: 10.55606/jurritek.v1i1.127.
J. Sihombing, “Klasifikasi Data Antroprometri Individu Menggunakan Algoritma Naïve Bayes Classifier,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 2, no. 1, pp. 1–10, 2021, doi: 10.37148/bios.v2i1.15.
S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 6, no. 2, pp. 118–127, 2021, doi: 10.31294/ijcit.v6i2.10438.
W. S. Dharmawan, “I N F O R M a T I K a Dalam Prediksi Penyakit Jantung,” J. Inform. Manaj. dan Komput., vol. 13, no. 2, pp. 31–41, 2021.
B. Delvika, N. Abror, and U. R. Gurning, “Perbandingan Algoritma NBC dan C4. 5 Dalam Analisa Sentimen Pemilihan Presiden 2024 Pada Twitter: Comparison of the NBC and C4. 5 Algorithms in Sentiment …,” SENTIMAS Semin. Nas. …, pp. 41–48, 2023, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas/article/view/548%0Ahttps://journal.irpi.or.id/index.php/sentimas/article/download/548/336
S. Adelia, E. Milanda, J. Santari, D. T. Kesuma, E. Silvia, and F. Kurniawan, “Analisis Sentimen Belajar Programming Pada Media Sosial Youtube Menggunakan Algoritma Klasifikasi Naive Bayes,” J. Inf. Technol. Ampera, vol. 4, no. 3, pp. 254–264, 2023, [Online]. Available: https://journal-computing.org/index.php/journal-ita/article/view/430
G. Rininda, I. Hartami Santi, and S. Kirom, “Penerapan Svm Dalam Analisis Sentimen Pada Edlink Menggunakan Pengujian Confusion Matrix,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 5, pp. 3335–3342, 2024, doi: 10.36040/jati.v7i5.7420.
S. F. Pane and M. S. Amrullah, “Systematic Literature Review: Analisa Sentimen Masyarakat terhadap Penerapan Peraturan ETLE,” J. Appl. Comput. Sci. Technol., vol. 4, no. 1, pp. 65–74, 2023, doi: 10.52158/jacost.v4i1.493.
Endrik, A. Nugroho, and A. T. Zy, “Penerapan Algoritma Naive Bayes dan PSO pada Analisis Sentimen Kandidat Calon Presiden 2024,” Remik Ris. dan E-Jurnal Manaj. Inform. Komput., vol. 7, no. 3, pp. 1367–1380, 2023.
A. R. Abdillah and F. N. Hasan, “Analisis Sentimen Terhadap Kandidat Calon Presiden Berdasarkan Tweets Di Sosial Media Menggunakan Naive Bayes Classifier,” Smatika J., vol. 13, no. 01, pp. 117–130, 2023, doi: 10.32664/smatika.v13i01.750.
M. K. Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di,” J. Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023.
M. F. Londjo, “Implementasi White Box Testing Dengan Teknik Basis Path Pada Pengujian Form Login,” J. Siliwaangi, vol. 7, no. 2, pp. 35–40, 2021.
K. S. Putri, I. R. Setiawan, and A. Pambudi, “Analisis Sentimen Terhadap Brand Skincare Lokal Menggunakan Naïve Bayes Classifier,” Technol. J. Ilm., vol. 14, no. 3, p. 227, 2023, doi: 10.31602/tji.v14i3.11259.
I. Nursyamsi and A. Momon, “Analisa Pengendalian Kualitas Menggunakan Metode Seven Tools untuk Meminimalkan Return Konsumen di PT. XYZ,” J. Serambi Eng., vol. 7, no. 1, pp. 2701–2708, 2022, doi: 10.32672/jse.v7i1.3878.
D. ARIFIN, “Universitas negeri medan,” Temat. Univ. Negeri Medan, vol. 11, no. 1, pp. 26–36, 2012, [Online]. Available: https://jurnal.unimed.ac.id/2012/
Mustika et al., Data Mining dan Aplikasinya. 2021. [Online]. Available: https://repository.penerbitwidina.com/uk/publications/351768/data-mining-dan-aplikasinya
A. F. Setyaningsih, D. Septiyani, and S. R. Widiasari, “Implementasi Algoritma Naïve Bayes untuk Analisis Sentimen Masyarakat pada Twitter mengenai Kepopuleran Produk Skincare di Indonesia,” J. Teknol. Inform. dan Komput., vol. 9, no. 1, pp. 224–235, 2023, doi: 10.37012/jtik.v9i1.1409.
H. H. Zain, R. M. Awannga, and W. I. Rahayu, “Perbandingan Model Svm, Knn Dan Naïve Bayes Untuk Analisis Sentiment Pada Data Twitter: Studi Kasus Calon Presiden 2024,” JIMPS J. Ilm. Mhs. Pendidik. Sej., vol. 8, no. 3, pp. 2083–2093, 2023, [Online]. Available: https://jim.usk.ac.id/sejarah
A. Setiawan, A. T. Prastowo, and D. Darwis, “Sistem Monitoring Keberadaan Posisi Mobil Berbasis Gps Dan Penyadap Suara Menggunkan Smartphone,” J. Tek. dan Sist. Komput., vol. 3, no. 1, pp. 35–44, 2022, doi: 10.33365/jtikom.v3i1.1644.
DOI: https://doi.org/10.30865/jurikom.v12i2.8538
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Nurbaiti Mahfudza, Muhammad Ihksan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JURIKOM (Jurnal Riset Komputer)
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : lppm.ubd@gmail.com