Analisis Sentimen Pada Komentar Mengenai Kartu Indonesia Pintar Menggunakan Metode Naïve Bayes

Dava Sindy, Sriani Sriani

Abstract


The Indonesia Smart Card (Kartu Indonesia Pintar – KIP) is a government program aimed at providing educational assistance to students from underprivileged families. This program seeks to improve access to education and increase learning opportunities for children, enabling them to complete their education up to the secondary or vocational level. In the digital era, public opinion regarding government policies, including KIP, is often expressed through social media platforms such as X. Sentiment analysis is a technique in natural language processing (NLP) used to identify, extract, and classify opinions from text. One of the commonly used algorithms for sentiment analysis is Naïve Bayes, which operates based on Bayes' Theorem with the assumption of feature independence. This algorithm is effective in text classification due to its simplicity and ability to handle large datasets.By utilizing the Naïve Bayes algorithm, sentiment analysis of the KIP program can provide deep insights into public responses. The results of this analysis can assist the government in evaluating policies, understanding public perceptions, and optimizing program implementation to ensure it effectively reaches its intended beneficiaries.


Keywords


Sentiment; Smart Indonesia Card; X; Naïve Bayes; text preprocessing

Full Text:

PDF

References


N. E. Rohaeni and O. Saryono, “Implementasi Kebijakan Program Indonesia Pintar ( PIP ) Melalui Kartu Indonesia Pintar ( KIP ) dalam Upaya Pemerataan Pendidikan,” J. Educ. Manag. Adm. Rev., vol. 2, no. 1, pp. 193–204, 2018, [Online]. Available: https://jurnal.unigal.ac.id/ijemar/article/view/1824

J. Jumanah and H. Rosita, “EVALUASI PROGRAM INDONESIA PINTAR DALAM UPAYA PEMERATAAN PENDIDIKAN,” Indonesian J. Soc. Polit. Sci., vol. 4, no. 1, p. 54, 2023, [Online]. Available: https://www.researchgate.net/publication/370406946_EVALUASI_PROGRAM_INDONESIA_PINTAR_DALAM_UPAYA_PEMERATAAN_PENDIDIKAN

M. Sari, S. Musdalifah, and E. A. Asfar, “Implementasi Kebijakan Kartu Indonesia Pintar Dalam Upaya Pemerataan Pendidikan di MTsN 1 Watampone,” MAPPESONA J. Manaj. Pendidik. Islam, vol. 3, no. 1, p. 44, 2021, doi: 10.35673/ajmpi.v8i1.422.

F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” J. Inovtek Polbeng - Seri Inform., vol. 3, no. 1, p. 51, 2018, [Online]. Available: https://media.neliti.com/media/publications/256208-implementasi-algoritma-naive-bayes-terha-8b9cc418.pdf

A. Nasir, et, “ANALISIS SENTIMEN NETIZEN TWITTER MENGENAI BEASISWA KIP KULIAH DI INDONESIA MENGGUNAKAN VADER,” vol. 9, no. 981, pp. 356–363, 2023, [Online]. Available: http://repository.unwira.ac.id/13329/

J. S. B. Ginting, M. Irawan, and M. G. Fadhliphya, “ANALISIS SENTIMEN BERDASARKAN OPINI DARI TWITTER TERHADAP PELAKU PENYALAHGUNAAN KIP K,” Etika Teknol. Inf., pp. 1–5, 2024, [Online]. Available: https://www.researchgate.net/publication/381829493_ANALISIS_SENTIMEN_BERDASARKAN_OPINI_DARI_TWITTER_TERHADAP_PELAKU_PENYALAHGUNAAN_KIP_K.

N. Sufni, “Analisis Keberhasilan Program Kartu Indonesia Pintar ( KIP ) dalam Meningkatkan Akses Pendidikan di Indonesia,” BENEFIT J. Business, Econimics, Financ., vol. 2, no. 2, pp. 38–45, 2024, [Online]. Available: https://publikasi.abidan.org/index.php/benefit/article/download/393/301/1444

R. Achmad and T. W. A., “Evaluasi Program Indonesia Pintar Dalam Upaya Pemerataan Pendidikan di Indonesia,” J. Adminitrasi Publik, p. 2, 2022, [Online]. Available: https://journal.uta45jakarta.ac.id/index.php/admpublik/article/view/6042

K. Yan, D. Arisandi, and Toni, “ANALISIS SENTIMEN KOMENTAR NETIZEN TWITTER TERHADAP KESEHATAN MENTAL MASYARAKAT INDONESIA,” J. Ilmu Komput. dan Sist. Inf., vol. 9, no. 2, pp. 5–6, 2021, [Online]. Available: https://journal.untar.ac.id/index.php/jiksi/article/view/17865/9870

H. M. Sukardi, Metodologi Penelitian Pendidikan: Kompetensi dan praktiknya, Edisi Revisi, 1st ed. Jakarta: Bumi Aksara, 2021. [Online]. Available: https://www.google.co.id/books/edition/Metodologi_Penelitian_Pendidikan/gJo_EAAAQBAJ?hl=id&gbpv=1&dq=perencanaan+penelitian&pg=PA299&printsec=frontcover

S. Y. Kusumastuti, A. F. Anggraeni, A. Rustam, D. E. Desi, and B. Waseso, Metodologi Penelitian (Pendekatan Kualitatif dan Kuantitatif), 1st ed. Jambi: PT. Sonpedia Publishing Indonesia, 2025. [Online]. Available: https://www.google.co.id/books/edition/Metodologi_Penelitian_Pendekatan_Kualita/0DxHEQAAQBAJ?hl=id&gbpv=1&dq=mengumpulkan+data&pg=PA93&printsec=frontcover

Y. Asri and M. Fajri, Implementasi Lexicon Vader dan Naive Bayes Pada Aplikasi PLN Mobile, 1st ed. Sidoarjo: Uwais Inspirasi Indonesia, 2019. [Online]. Available: https://www.google.co.id/books/edition/Implementasi_Lexicon_Vader_dan_Naïve_Ba/CqPtEAAAQBAJ?hl=id&gbpv=1&dq=preprocessing+text+naive+bayes&pg=PA46&printsec=frontcover

Kusrini and E. T. Luthfi, Algoritma Data Mining, 1st ed. Yogyakarta: C.V ANDI OFFSET, 2009. [Online]. Available: https://www.google.co.id/books/edition/Algoritma_Data_Mining/-Ojclag73O8C?hl=id&gbpv=1&dq=analisis+data+mining&pg=PA150&printsec=frontcover

E. A. Novia, W. I. Rahayu, and C. Prianto, Sistem Perbandingan Algoritma K-Means dan Naive Bayes Untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan, 1st ed. Bandung: Kreatif Industri Nusantara, 2020. [Online]. Available: https://www.google.co.id/books/edition/SISTEM_PERBANDINGAN_ALGORITMA_K_MEANS_DA/MND9DwAAQBAJ?hl=id&gbpv=1&dq=NAIVE+BAYES&pg=PA37&printsec=frontcover

R. T. Yunardi and N. Z. Dina, Data Mining dan Machine Learning dengan Orange3 Tutorial dan Aplikasinya, 1st ed. Surabaya: Airlangga University Press, 2022. [Online]. Available: https://www.google.co.id/books/edition/DATA_MINING_dan_MACHINE_LEARNING_dengan/hplvEAAAQBAJ?hl=id&gbpv=1&dq=naive+bayes+classifier&pg=PA69&printsec=frontcover

Sriani, Suhardi, and L. S. Yardha, “Analisis Sentimen Pengguna Aplikasi Monile JKN Menggunakan Algoritma Naive Bayes Classifier Dan C4.5,” J. Sci. Soc. Res., vol. 7, no. 2, pp. 555–563, 2024, [Online]. Available: https://jurnal.goretanpena.com/index.php/JSSR/article/view/1873/1181

C. R. A. Widiawati and A. M. Wahid, Pemrosesan Bahasa Alami Konsep, Algoritma & Implementasi, 1st ed. Purwokerto: CV. ZT CORPORA, 2025. [Online]. Available: https://www.google.co.id/books/edition/PEMROSESAN_BAHASA_ALAMI_Konsep_Algoritma/bKlOEQAAQBAJ?hl=id&gbpv=1&dq=teks+preprocessing+naive+bayes&pg=PA157&printsec=frontcover

Solimun, A. A. R. Fernandes, Nurjannah, E. G. Erwinda, R. Hardianti, and L. H. Y. Arini, Metodologi Penelitian: Variabel Mining Berbasis Big Data Dalam Pemodelan Sistem untuk Mengungkap Research Novelty, 1st ed. Malang: UB Press, 2023. [Online]. Available: https://www.google.co.id/books/edition/Metodologi_Penelitian/GfXaEAAAQBAJ?hl=id&gbpv=1&dq=pelabelan+data+adalah&pg=PA34&printsec=frontcover

T. C. S. Rani and E. Sahputra, Penerapan Machine Learning Terhadap Analisis Sentimen Masyarakat Dalam Pemilihan Presiden Indonesia 2024, 1st ed. Bengkulu: Penerbit NEM, 2024. [Online]. Available: https://www.google.co.id/books/edition/Penerapan_Machine_Learning_terhadap_Anal/KRALEQAAQBAJ?hl=id&gbpv=0




DOI: https://doi.org/10.30865/jurikom.v12i2.8528

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Dava Sindy, Sriani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JURIKOM (Jurnal Riset Komputer) 
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : lppm.ubd@gmail.com