Deteksi Kualitas Buah Sawo dengan Pendekatan Ekstraksi Fitur GLCM dan Algoritma Support Vector Machine
Abstract
The quality of sapodilla fruit is a crucial factor in ensuring product standards and consumer satisfaction. This study aims to detect the quality of sapodilla fruit using the Gray Level Co-occurrence Matrix (GLCM) method for texture feature extraction and Support Vector Machine (SVM) as the classification algorithm. A dataset of sapodilla fruit images was collected and processed using data augmentation techniques to enhance image variation. Extracted features, including contrast, homogeneity, energy, and correlation, were used as input for the SVM model. The model was developed using a train-test split approach and evaluated based on accuracy, precision, recall, and F1-score. Experimental results show that the proposed method successfully classifies sapodilla fruit into three categories—raw, ripe, and damaged—with an accuracy of 85%. This model was implemented in a MATLAB-based Graphical User Interface (GUI), enabling users to automatically classify sapodilla quality easily and efficiently.
Keywords
Full Text:
PDFReferences
Faisal & Samsia, “Uts student confrence,” vol. 1, no. 3, pp. 133–143, 2023.
F. Nurfajar, M. Suhendra, K. Ramadhan, M. Rizky Afrianto, and P. Rosyani, “Algoritma Pengolahan Citra Untuk Deteksi Cacat Buah Jeruk Dengan Image Processing,” J. Artif. Intel. dan Sist. Penunjang Keputusan, vol. 1, no. 4, pp. 296–299, 2024, [Online]. Available: https://jurnalmahasiswa.com/index.php/aidanspk
[Kementan] Kementerian Pertanian, Statistik Pertanian Tahun 2021. 2022.
H. P. Hadi and E. H. Rachmawanto, “Ekstraksi Fitur Warna Dan Glcm Pada Algoritma Knn Untuk Klasifikasi Kematangan Rambutan,” J. Inform. Polinema, vol. 8, no. 3, pp. 63–68, 2022, doi: 10.33795/jip.v8i3.949.
T. Lusiana, V., Al Amin, I. H., Hartono, B., & Kristianto, “Ekstraksi Fitur Tekstur Menggunakan Matriks GLCM pada Citra dengan Variasi Arah Obyek,” Pros. SENDI_U, pp. 978–979, 2019.
Y. E. Yana and N. Nafi’iyah, “Klasifikasi Jenis Pisang Berdasarkan Fitur Warna, Tekstur, Bentuk Citra Menggunakan SVM dan KNN,” Res. J. Comput. Inf. Syst. Technol. Manag., vol. 4, no. 1, p. 28, 2021, doi: 10.25273/research.v4i1.6687.
R. Maneno, B. Baso, P. G. Manek, and K. Fallo, “Deteksi Tingkat Kematangan Buah Pinang Menggunakan Metode Support Vector Machine Berdasarkan Warna Dan Tekstur,” J. Inf. Technol., vol. 3, no. 2, pp. 60–66, 2023, doi: 10.32938/jitu.v3i2.5323.
B. Maulana Alfaruq, D. Erwanto, and I. Yanuartanti, “Klasifikasi Kematangan Buah Tomat Dengan Metode Support Vector Machine,” Gener. J., vol. 7, no. 3, pp. 64–72, 2023, doi: 10.29407/gj.v7i3.21092.
K. Tingkat et al., “Tomat Dengan Variasi Model Warna,” vol. 1, no. 2, pp. 203–210, 2023.
A. Hamzah, E. Susanti, and R. M. Lestari, “BERDASARKAN FITUR WARNA MENGGUNAKAN,” vol. 6, no. 1, pp. 108–120, 2024.
Y. Kasnanda Bintang, H. Imaduddin, Y. Kasnanda, and B. Corresponding Author, “Pengembangan Model Deep Learning Untuk Deteksi Retinopati Diabetik Menggunakan Metode Transfer Learning,” vol. 9, no. 3, pp. 1442–1455, 2024, [Online]. Available: https://doi.org/10.29100/jipi.v9i3.5588
M. Zahara et al., “Klasifikasi Kualitas Varietas Benih Jagung Bima 20 Menggunakan Metode Random Forest,” vol. 10, no. 2, pp. 367–385, 2024.
J. P. Wiastopo and I. Imelda, “Deteksi Kesegaran Ikan Kembung dengan Metode KNN Berdasarkan Fitur GLCM dan RGB-HSV,” vol. 13, no. September, pp. 10–16, 2024.
H. Adams, E. Farnell, and B. Story, “Support Vector Machines and Radon’S Theorem,” Found. Data Sci., vol. 4, no. 4, pp. 467–494, 2022, doi: 10.3934/fods.2022017.
R. Rustan, “Pemodelan Gerak 2 Dimensi Berbasis GUI Matlab dengan Ketinggian Awal Tertentu,” Radiasi J. Berk. Pendidik. Fis., vol. 14, no. 2, pp. 99–107, 2021, doi: 10.37729/radiasi.v14i2.1288.
C. Neural and N. Cnn, “Inovasi Pendidikan Nusantara Inovasi Pendidikan Nusantara,” vol. 6, no. 1, pp. 523–539, 2025.
F. Refindha, A. Harianto, Z. Alawi, and I. Aristia, “PENGARUH KOMPOSISI SPLIT DATA PADA AKURASI KLASIFIKASI PENDERITA DIABETES MENGGUNAKAN,” vol. 8, no. 1, pp. 36–44, 2025.
M. Muhathir, M. H. Santoso, and D. A. Larasati, “Wayang Image Classification Using SVM Method and GLCM Feature Extraction,” J. Informatics Telecommun. Eng., vol. 4, no. 2, pp. 373–382, 2021, doi: 10.31289/jite.v4i2.4524.
R. Novidianto, “Prediksi Fase Pertumbuhan Padi Berdasarkan Data Citra Multipemporal Landsat-8 dengan Metode Convolutional Neural Networ (CNN) dan Rotation Forest Multiclass (Rotfor) (Studi Kasus: Sampel KSA Kabupaten Poso, Provinsi Sulawesi Tengah),” 2021.
T. Zhao, C. Chen, Y. Liu, and X. Zhu, “GUIGAN: Learning to generate GUI designs using generative adversarial networks,” Proc. - Int. Conf. Softw. Eng., pp. 748–760, 2021, doi: 10.1109/ICSE43902.2021.00074.
DOI: https://doi.org/10.30865/jurikom.v12i2.8519
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Karisma Fidiya, Muhammad Jauhar Vikri, Alif Yuanita Kartini

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JURIKOM (Jurnal Riset Komputer)
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : lppm.ubd@gmail.com