Sistem Absensi Guru Berbasis Pengenalan Wajah Menggunakan Algoritma YOLOv8

Satria Putra Dharma Prayudha, Aditya Dwi Putro

Abstract


This research aims to design and implement a web-based teacher attendance system that utilizes facial recognition technology through the YOLOv8 algorithm as a solution to the conventional paper-based attendance system, which is prone to recording errors, data manipulation, and potential information loss. Data collection was conducted by recording short videos of 24 teachers and staff at SD Negeri 1 Purbalingga Lor under various lighting conditions and viewpoints, which were then converted into an image dataset using the Roboflow platform. The dataset was processed through several preprocessing stages including video-to-image conversion, image resizing, augmentation, and data splitting for training, validation, and testing purposes. The YOLOv8s model was chosen due to its ability to detect faces in real time with high accuracy, as demonstrated by training results showing an mAP of 98.6%, Precision of 97.8%, and Recall of 98.5%. The integration of the model into a backend Flask-based application enables the attendance process to be carried out automatically and in real time, while functional testing using the Black Box Testing method confirms that the face detection feature operates as designed, achieving an accuracy of 93% under optimal lighting conditions. Consequently, this research successfully presents an innovative digital solution that not only enhances the efficiency of attendance administration but also minimizes the risks of data manipulation and recording errors in educational environments.


Keywords


Facial Recognition; YOLOv8; Attendance; Deep Learning

Full Text:

PDF

References


A. A. P. Sakri et al., “Penerapan Sistem Deteksi Wajah dan Suhu Tubuh untuk Presensi Berbasis IoT di SMA Al Kenzie Bandung,” Jurnal Pengabdian kepada Masyarakat Nusantara, vol. 5, no. 1, pp. 1363–1371, Mar. 2024, doi: 10.55338/jpkmn.v5i1.2667.

J. Deni, “Perancangan Aplikasi Deteksi Wajah Untuk Kehadiran Menggunakan Computer Vision (CV).” Accessed: Apr. 01, 2024. [Online]. Available: https://repository.ittelkom-pwt.ac.id/9543/

T. A. Pertiwi et al., “Perancangan Dan Implementasi Sistem Informasi Absensi Berbasis Web Menggunakan Metode Agile Software Development,” Jurnal Testing dan Implementasi Sistem Informasi, vol. 1, no. 1, Art. no. 1, Mar. 2023, Accessed: Apr. 15, 2024. [Online]. Available: https://journal.al-matani.com/index.php/jtisi/article/view/325

S. Mayunita and S. H. Jumaah, “Efektifitas Sistem Absensi Finger Print dalam Meningkatkan Kedisiplinan Pegawai Negeri Sipil Pada Kantor Sekretariat DPRD Buton,” Jurnal Penelitian Ilmu Sosial dan Eksakta, vol. 1, no. 2, pp. 98–107, Mar. 2022, doi: 10.47134/trilogi.v1i2.19.

“PERANCANGAN ABSENSI BERBASIS FACE RECOGNITION PADA DESA SOKARAJA LOR MENGGUNAKAN PLATFORM ANDROID | JATISI (Jurnal Teknik Informatika dan Sistem Informasi),” Mar. 2021, Accessed: Apr. 14, 2024. [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/629

A. Gallu, A. Himamunanto, and H. Budiati, “Pengenalan Emosi pada Citra wajah menggunakan Metode YOLO,” Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), vol. 5, no. 3, Art. no. 3, Jul. 2024, doi: 10.30645/kesatria.v5i3.444.

M. A. Taufiqurrochman and H. Februariyanti, “Rancang Bangun Aplikasi Deteksi Alat Pelindung Diri (APD) untuk Pekerja Proyek dengan Menggunakan Algoritma Yolov5,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 2, Art. no. 2, Apr. 2024, doi: 10.35870/jtik.v8i2.1960.

D. I. Mulyana and Sahroni, “Optimasi Penerapan Algoritma Yolo dan Data Augmentasi dalam Klasifikasi Pakaian Tradisional Kebaya,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 1, Art. no. 1, Jan. 2024, doi: 10.35870/jtik.v8i1.1446.

P. Hidayatullah, Buku Sakti Deep Learning Computer Vision Menggunakan YOLO untuk Pemula. Stunning Vision Al Academy, 2023. Accessed: Mar. 25, 2025. [Online]. Available: https://openlibrary.telkomuniversity.ac.id/home/catalog/id/185855/slug/buku-sakti-deep-learning-computer-vision-menggunakan-yolo-untuk-pemula.html

R. F. Putra and D. I. Mulyana, “Optimasi Deteksi Objek Dengan Segmentasi dan Data Augmentasi Pada Hewan Siput Beracun Menggunakan Algoritma You Only Look Once (YOLO),” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 1, Art. no. 1, Jan. 2024, doi: 10.35870/jtik.v8i1.1391.

D. Aldiani, G. Dwilestari, H. Susana, R. Hamonangan, and D. Pratama, “Implementasi Algoritma CNN dalam Sistem Absensi Berbasis Pengenalan Wajah,” Jurnal Informatika Polinema, vol. 10, no. 2, Art. no. 2, Feb. 2024, doi: 10.33795/jip.v10i2.4852.

D. E. S. M. Pahlevi, Kecerdasan Buatan dengan Deep Computer Vision. Elex Media Komputindo, 2024.

I. Salamah, M. R. A. Said, and S. Soim, “Perancangan Alat Identifikasi Wajah Dengan Algoritma You Only Look Once (YOLO) Untuk Presensi Mahasiswa,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 3, Art. no. 3, Jul. 2022, doi: 10.30865/mib.v6i3.4399.

A. Fu’adi, “Pembangunan Sistem Monitoring Kehadiran Mahasiswa Menggunakan Yolo Pendeteksi Obyek dan Pengenal Wajah Opencv | Jurnal Ilmiah Teknologi Informasi Asia,” May 2024, Accessed: Jun. 22, 2024. [Online]. Available: https://jurnal.stmikasia.ac.id/index.php/jitika/article/view/999

A. Valentino, A. R. S.n, F. Wijoyo, I. J. Lestari, T. P. Andari, and P. Rosyani, “Studi literatur review: Alat Identifikasi Wajah untuk Absensi Mahasiswa Dengan Algoritma YOLO pada Flatform Android,” LOGIC : Jurnal Ilmu Komputer dan Pendidikan, vol. 1, no. 2, Art. no. 2, Feb. 2023, Accessed: Jun. 22, 2024. [Online]. Available: https://journal.mediapublikasi.id/index.php/logic/article/view/1597

Y. Yanto, F. Aziz, and I. Irmawati, “YOLO-V8 PENINGKATAN ALGORITMA UNTUK DETEKSI PEMAKAIAN MASKER WAJAH,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 3, Art. no. 3, Oct. 2023, doi: 10.36040/jati.v7i3.7047.

A. P. Saputri, A. Taqwa, and S. Soim, “Analisis Deteksi Objek Citra Digital Menggunakan Algoritma Yolo dan CNN Dengan Arsitektur REPVGG pada Sistem Pendeteksian dan Pengenalan Ekspresi Wajah,” Syntax Literate ; Jurnal Ilmiah Indonesia, vol. 7, no. 9, pp. 13068–13080, 2022, doi: 10.36418/syntax-literate.v7i9.9393.

E. Ardyan et al., METODE PENELITIAN KUALITATIF DAN KUANTITATIF : Pendekatan Metode Kualitatif dan Kuantitatif di Berbagai Bidang. PT. Sonpedia Publishing Indonesia, 2023.

A. H. A. Ash’shobir, K. G. P. Harli, A. P. P. Rudi, I. G. S. Putro, and O. D. P. Cahyono, “Sistem Deteksi Kualitas Cabai Rawit Menggunakan Metode YOLO: You Only Look Once,” Modem : Jurnal Informatika dan Sains Teknologi., vol. 3, no. 1, pp. 114–132, Jan. 2025, doi: 10.62951/modem.v3i1.363.

G. V. Agustin, M. Ayub, and S. L. Liliawati, “Deteksi dan Klasifikasi Tingkat Keparahan Jerawat: Perbandingan Metode You Only Look Once,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 10, no. 3, Art. no. 3, Dec. 2024, doi: 10.28932/jutisi.v10i3.9414.

“Pengujian Aplikasi Sistem Informasi Akademik menggunakan Metode Blackbox dengan Teknik Boundary Value Analysis | Journal Automation Computer Information System.” Accessed: Mar. 26, 2025. [Online]. Available: https://jacis.pubmedia.id/index.php/jacis/article/view/78




DOI: https://doi.org/10.30865/jurikom.v12i2.8511

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Satria Putra Dharma Prayudha, Aditya Dwi Putro Wicaksono

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JURIKOM (Jurnal Riset Komputer) 
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : lppm.ubd@gmail.com