Implementasi Time Series Forecasting dengan Algoritma LSTM untuk Pemantauan dan Prediksi Produktivitas Kelapa Sawit Berdasarkan Hasil Panen

Ardian Pramana Putra, Aninda Muliani Harahap

Abstract


Palm oil productivity is a key factor in maintaining the stability and sustainability of Indonesia's agribusiness industry. The fluctuation in yield at PTPN IV Kebun Bah Birung Ulu, which increased from 43,308 tons in 2020 to 44,028 tons in 2022 and then decreased to 34,643 tons in 2024, highlights the need for a more accurate monitoring system. These fluctuations are influenced by weather, fertilizer usage, plant infections, and plant age. Manual record-keeping without digital system support also increases the risk of errors and complicates production monitoring. This study aims to develop a web-based palm oil productivity prediction system using the Long Short-Term Memory (LSTM) algorithm. Five years of daily historical data, including plant age, fertilizer usage, rainfall, infection rates, and harvest results per afdeling, were used as model input. The research process includes data collection, preprocessing with Min-Max normalization, data splitting into 80% training and 20% testing, and training the LSTM model with two LSTM layers, two dropout layers, and one Dense layer. Model evaluation using Root Mean Squared Error (RMSE) shows that the model can predict productivity with good accuracy, with the best RMSE for each target variable achieved at different epochs. The 2025 prediction results indicate a stable or declining trend influenced by plant age, fertilizer application, rainfall, and infection rates. The developed web-based system features real-time monitoring and data visualization, providing a more efficient solution for production management and strategic decision-making in palm oil plantations.

Keywords


Palm Oil Productivity; Time Series; LSTM; Prediction; Web-Based System

Full Text:

PDF

References


BPS, Statistik Kelapa Sawit Indonesia 2021. Jakarta: Badan Pusat Statistik/BPS–Statistics Indonesia, 2021.

R. A. Hadiguna, MANAJEMEN RANTAI PASOK AGROINDUSTRI. Padang: Andalas University Press, 2016.

T. Ningsih, R. Maharany, and S. Khoirul Fu, “ANALISA PRODUKTIVITAS KELAPA SAWIT DI DATARAN TINGGI KEBUN BAH BIRONG ULU-PT. PERKEBUNAN NUSANTARA IV,” Jurnal Agrium, vol. 17, no. 1, 2020.

W. D. U. Parwati, F. H. Nadeak, and V. Kautsar, “Analisis Pertumbuhan dan Produktivitas Kelapa Sawit pada Variasi Kerapatan Tanam,” Jurnal Agro Industri Perkebunan, pp. 105–116, Jul. 2023, doi: 10.25181/jaip.v12i2.3535.

A. Gabriel, S. Zaman, and Supijatno, “Pengelolaan Sistem Panen Kelapa Sawit (Elaeis guineensis Jacq.) di Kebun Rambutan, Serdang Berdagai, Sumatera Utara,” 2023.

M. Ichsan, Samsudin, and A. M. Harahap, “Sales Forecasting Application Using The Triple Exponential Smoothing Method Based on Android,” 2022.

D. Marpaung, S. Sumarno, and I. Gunawan, “Prediksi Produktivitas Kelapa Sawit di PTPN IV dengan Algoritma Backpropagation,” 2020. [Online]. Available: https://djournals.com/index.php/klik|Page35

M. David, I. Cholissodin, and N. Yudistira, “Prediksi Harga Cabai menggunakan Metode Long-Short Term Memory (Case Study : Kota Malang),” 2023. [Online]. Available: http://j-ptiik.ub.ac.id

T. B. Sianturi, I. Cholissodin, and N. Yudistira, “Penerapan Algoritma Long Short-Term Memory (LSTM) berbasis Multi Fungsi Aktivasi Terbobot dalam Prediksi Harga Ethereum,” 2023. [Online]. Available: http://j-ptiik.ub.ac.id

R. I. Pratiwi, N. Salam, H. Maisarah, J. A. Yani, K. M. 36, and K. Selatan, “PERAMALAN JUMLAH PRODUKSI TANDAN BUAH SEGAR (TBS) KELAPA SAWIT MENGGUNAKAN METODE FUZZY TIME SERIES (STUDI KASUS: PT KALIMANTAN SAWIT KUSUMA),” 2023. [Online]. Available: http://ppjp.ulm.ac.id/journals/index.php/epsilon

A. Widiarni and M. Mustakim, “Penerapan Algoritma Support Vector Regression dalam Memprediksi Produksi dan Produktivitas Kelapa Sawit,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 2, p. 864, Apr. 2023, doi: 10.30865/mib.v7i2.6089.

R. Al Kiramy, I. Permana, A. Marsal, M. R. Munzir, and M. Megawati, “Perbandingan Performa Algoritma RNN dan LSTM dalam Prediksi Jumlah Jamaah Umrah pada PT. Hajar Aswad,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 4, pp. 1224–1234, Jul. 2024, doi: 10.57152/malcom.v4i4.1373.

A. Khumaidi, R. Raafi, I. Permana Solihin, and J. Rs Fatmawati, “Pengujian Algoritma Long Short Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung,” Jurnal Telematika, vol. 15, no. 1, 2020.

G. Daruhadi and P. Sopiati, “Pengumpulan Data Penelitian,” in Jurnal Cendekia Ilmiah, 2024.

B. G. Aji, D. C. A. Sondawa, F. A. Anindika, and D. Januarita, “Analisis Peramalan Obat Menggunakan Metode Simple Moving Average, Weighted Moving Average, Dan Exponential Smoothing,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, p. 959, Aug. 2022, doi: 10.30865/jurikom.v9i4.4454.

I. Permana and F. Nur Salisah, “Pengaruh Normalisasi Data Terhadap Performa Hasil Klasifikasi Algoritma Backpropagation,” 2022.

H. Budiman, “ANALISIS DAN PERBANDINGAN AKURASI MODEL PREDIKSI RENTET WAKTU SUPPORT VECTOR MACHINES DENGAN SUPPORT VECTOR MACHINES PARTICLE SWARM OPTIMIZATION UNTUK ARUS LALU LINTAS JANGKA PENDEK,” 2016.

R. Juniadi Domitri Simamora, “Peramalan Curah Hujan Menggunakan Metode Extreme Learning Machine,” 2019. [Online]. Available: http://j-ptiik.ub.ac.id

T. G. Lasijan, R. Santoso, and A. R. Hakim, “PREDIKSI HARGA EMAS DUNIA MENGGUNAKAN METODE LONG-SHORT TERM MEMORY,” Jurnal Gaussian, vol. 12, no. 2, pp. 287–295, Jul. 2023, doi: 10.14710/j.gauss.12.2.287-295.

R. Dina, N. Azizah, D. S. Susanti, and S. Annisa, “PREDIKSI INDEKS HARGA KONSUMEN KELOMPOK BAHAN MAKANAN DI PROVINSI KALIMANTAN SELATAN,” 2024. [Online]. Available: http://ppjp.ulm.ac.id/journals/index.php/epsilon

M. Atharsyah, M. A. Romli, J. R. Utara, K. Sleman, and I. Yogyakarta, “IMPLEMENTASI MODEL LSTM, GRU, BILSTM, DAN BIGRU DALAM PREDIKSI HARGA NIKEL,” 2024. [Online]. Available: http://e-journal.stmiklombok.ac.id/index.php/jireISSN.2620-6900




DOI: https://doi.org/10.30865/jurikom.v12i2.8495

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ardian Pramana Putra, Aninda Muliani Harahap

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JURIKOM (Jurnal Riset Komputer) 
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : lppm.ubd@gmail.com