Pemanfaatan Pengenalan Wajah Untuk Prediksi Umur Calon Peserta Didik Baru SMP Dengan AWS Rekognition
DOI:
https://doi.org/10.30865/mib.v8i3.8129Keywords:
Face Recognition, Age Prediction, AWS Rekognition, Age Verification, AI TechnologyAbstract
Verification of the age of new prospective students for middle school is a crucial step that often faces significant challenges when conducted manually, as it is time-consuming and prone to errors. This research aims to address these issues by utilizing facial recognition technology through AWS Rekognition to automatically and accurately predict the age of prospective students. In this study, facial data of new prospective students were collected and analyzed using AWS Rekognition to estimate their ages. The predicted results were then compared with the actual age data to assess the accuracy and effectiveness of the applied method. This study found that AWS Rekognition was able to provide age predictions with a high level of accuracy, achieving a Mean Absolute Error (Low Age) of 2.252032520325203 and a Mean Absolute Error (High Age) of 4.048780487804878, making it an effective tool for age verification. The use of this facial recognition technology not only increases the efficiency and speed of verification but also reduces the potential for human error. Thus, the implementation of AWS Rekognition can be an innovative and reliable solution for improving the quality of the age verification process for new prospective students.
References
M. A. Safitri and R. Yusran, “Evaluasi Kebijakan Penerimaan Peserta Didik Baru (PPDB) dengan Sistem Zonasi pada SMA Negeri di Kota Padang,†Journal of Civic Education, vol. 4, no. 1, pp. 92–100, 2021, doi: 10.24036/jce.v4i1.436.
R. K. Filsafat, S. Pendidikan, K. Pendidikan, and F. Uny, “IMPLEMENTASI KEBIJAKAN PENERIMAAN PESERTA DIDIK BARU (PPDB) SISTEM ZONASI PADA JENJANG SMP NEGERI DI KOTA YOGYAKARTA THE IMPLEMENTATION OF ZONATION SYSTEM FOR NEW STUDENT ADMISSIONS (PPDB) POLICY AT SMP NEGERI IN YOGYAKARTA.â€
R. Leonando Aoetpah, B. Ismanto, M. Administrasi Pendidikan, and U. Kristen Satya Wacana, “IMPLEMENTASI PPDB ZONASI DALAM PERSPEKTIF TEORI PERUBAHAN KURT LEWIN,†SAP (Susunan Artikel Pendidikan, vol. 7, no. 2, 2022.
A. A. M. I. Puji Suryanti, “EFEKTIVITAS PELAKSANAAN SISTEM ZONASI DALAM PENERIMAAN PESERTA DIDIK BARU (PPDB) SERTA PENGARUHNYA TERHADAP UPAYA MANAJEMEN MUTU PENDIDIKAN BERDASARKAN ASAS KEADILAN DI SMA NEGERI KABUPATEN KLATEN,†JURNAL CANDI, vol. 20, no. 1, pp. 111–126, Mar. 2020.
S. A. Salamah and S. Anjaryani, “IMPLEMENTASI PENERIMAAN PESERTA DIDIK SEKOLAH KHUSUS OLAHRAGAWAN SMP/SMA NEGERI RAGUNAN JAKARTA,†SAP (Susunan Artikel Pendidikan, vol. 8, no. 3, 2024.
A. L. Perdana and S. Suharni, “Analisis Adopsi Inovasi Teknologi Informasi Menggunakan Innovation and Diffusion Theory (IDT) Pada PPDB Online SMKN 3 Gowa,†Jurnal Pendidikan dan Teknologi Indonesia, vol. 1, no. 7, pp. 269–274, Jul. 2021, doi: 10.52436/1.jpti.57.
S. T. Nurjaningsih and A. Qonita, “Jurnal Tata Kelola Pendidikan MANAJEMEN PENERIMAAN PESERTA DIDIK BARU (PPDB) SISTEM ZONASIâ€, [Online]. Available: https://ejournal.upi.edu/index.php/jtkp
A. Arifandi, “Jurnal Terapan Sains & Teknologi IDENTIFIKASI DAN PREDIKSI UMUR SERTA JENIS KELAMIN BERDASARKAN CITRA WAJAH MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK(CNN),†Fakultas Sains dan Teknologi-Universitas PGRI Kanjuruhan Malang, vol. 4, no. 2, p. 2022.
I. Budi Trisno and M. Agung Raharja, “WEBINAR ARTIFICIAL INTELLIGENCE DAN MACHINE LEARNING,†JPM Jurnal Pengabdian Mandiri, vol. 2, no. 11, 2023, [Online]. Available: http://bajangjournal.com/index.php/JPM
J. Afrita, “Peran Artificial Intelligence dalam Meningkatkan Efisiensi dan Efektifitas Sistem Pendidikan,†COMSERVA : Jurnal Penelitian dan Pengabdian Masyarakat, vol. 2, no. 12, pp. 3181–3187, Apr. 2023, doi: 10.59141/comserva.v2i12.731.
B. A. Septyanto, “Implementasi Face Recognition Berbasis Deep Neural Network Sebagai Sistem Kendali Pada Quadcopter Implementation Of Face Recognition Based On Deep Neural Network As Control System On Quadcopter,†vol. 8, no. 6, pp. 3036–3050, 2022.
E. Purwawijaya, R. N. Singarimbun, and H. Pasaribu, “Implementasi Face Recognition Pada Absensi Karyawan Menggunakan Local Binary Pattern Histogram dan SHA 256 bit,†Jurnal Media Informatika Budidarma, vol. 6, no. 4, p. 2383, 2022, doi: 10.30865/mib.v6i4.4923.
M. S. A. F. A. Risky Aditia, “Implementation of Opencv Face Recognition in Real-Time Age and Gender Detection Using Python with Classification Method,†Jurnal Garuda Pengabdian Kepada Masyarakat, vol. 1, no. 2, pp. 49–55, Sep. 2023.
N. J. Lailatul Fitria and M. Maksin, “Strategi Implementasi Face Recognition sebagai Inovasi dalam Meningkatkan Akurasi Verifikasi Peserta Seleksi ASN,†Jurnal Studi Inovasi, vol. 2, no. 1, pp. 54–62, Jan. 2022, doi: 10.52000/jsi.v2i1.76.
F. Adiputra and F. Umam, “Presensi Wireless Otomatis menggunakan Face Recognition,†Rekayasa, vol. 15, no. 3, pp. 386–397, Dec. 2022, doi: 10.21107/rekayasa.v15i3.19762.
M. A. Joodi, M. H. Saleh, and D. J. Khadhim, “Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS),†Journal of Engineering, vol. 29, no. 4, pp. 176–206, Apr. 2023, doi: 10.31026/j.eng.2023.04.12.
L. Li, X. Mu, S. Li, and H. Peng, “A Review of Face Recognition Technology,†IEEE Access, vol. 8, pp. 139110–139120, 2020, doi: 10.1109/ACCESS.2020.3011028.
A. A. Suryanto, A. Muqtadir, and S. Artikel, “PENERAPAN METODE MEAN ABSOLUTE ERROR (MEA) DALAM ALGORITMA REGRESI LINEAR UNTUK PREDIKSI PRODUKSI PADI Info Artikel : ABSTRAK,†no. 1, p. 11, 2019.
D. Hindarto, “Indonesian Culinary Application System Design with UML Method,†Journal of Computer Networks, Architecture and High Performance Computing, vol. 5, no. 2, pp. 612–622, Aug. 2023, doi: 10.47709/cnahpc.v5i2.2675.
A. T. Nurani, A. Setiawan, and B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma,†Jurnal Sains dan Edukasi Sains, vol. 6, no. 1, pp. 34–43, May 2023, doi: 10.24246/juses.v6i1p34-43.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).