Analisis Sentimen Cyberbullying Pada Media Sosial X Menggunakan Metode Support Vector Machine
DOI:
https://doi.org/10.30865/mib.v8i3.7926Keywords:
Sentiment Analysis, Social Media, X, Cyberbullying, SVMAbstract
Twitter or the platform now known as social media X is now one of the social networks most popular. Its popularity not only does it have a positive impact but it also has a negative impact on both users and non-users of the X platform. The negative impact is a lot many social media users use it to insult or defame, known as Cyberbullying. Cyberbullying is a deliberate act and occurs virtually through verbal intimidation or ongoing harassment on the internet or social media. Cyberbullying can cause serious emotional impacts for the victim, such as depression, behavior changes, mood swings, and sleep and appetite disorders. To overcome this problem, sentiment analysis using data from X to determine the level of accuracy with the Support Vector Machine algorithm. Data was collected through Crawling as many as 1000 data, then Preprocessing was carried out. After preprocessing, data labeling was carried out manually, there were 157 positive data and 843 negative data. Then, the data was separated into two parts, namely 80% training data and 20% testing data. The results of data processing showed 87% accuracy, 88% precision, 99% recall, and 93% f1-score.References
F. Fajrin and N. Andini, “Analisis Kepuasan Pelanggan Ojek Online Di Kawasan Kota Bandung,†J. Ilm. Manaj. dan Bisnis, vol. 2, no. 1, pp. 1–13, 2023, doi: 10.24034/jimbis.v2i1.5735.
U. Khaira, R. Johanda, P. E. P. Utomo, and T. Suratno, “Sentiment Analysis Of Cyberbullying On Twitter Using SentiStrength,†Indones. J. Artif. Intell. Data Min., vol. 3, no. 1, p. 21, 2020, doi: 10.24014/ijaidm.v3i1.9145.
R. Mahendrajaya, G. A. Buntoro, and M. B. Setyawan, “Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine,†Komputek, vol. 3, no. 2, p. 52, 2019, doi: 10.24269/jkt.v3i2.270.
D. Saputra et al., “Pengaruh Cyberbullying Terhadap Kesehatan Mental Remaja,†Cenderawasih J. Couns. Educ., vol. 1, no. 2, pp. 86–94, 2022, doi: 10.31957/cjce.v1i2.2642.
F. A. Maulana and I. Ernawati, “Analisa sentimen cyberbullying di jejaring sosial twitter dengan algoritma naïve bayes,†Semin. Nas. Mhs. Ilmu Komput. dan Apl. (SENAMIKA, pp. 529–538, 2020, [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/619
F. A. Imani, A. Kusmawati, and H. M. T. Amin, “Pencegahan Kasus Cyberbullying Bagi Remaja Pengguna Sosial Media,†Khidm. Sos. J. Soc. Work Soc. Serv., vol. 2, no. 1, pp. 74–83, 2021, [Online]. Available: https://jurnal.umj.ac.id/index.php/khidmatsosial/article/view/10433
F. S. Mutma, “Deskripsi pemahaman,†Komunikasi, vol. XIII, no. 02, pp. 165–182, 2019, [Online]. Available: https://journal.trunojoyo.ac.id/komunikasi/article/view/5928/4250
D. Riswanto and R. Marsinun, “Perilaku Cyberbullying Remaja di Media Sosial,†Analitika, vol. 12, no. 2, pp. 98–111, 2020, doi: 10.31289/analitika.v12i2.3704.
T. Biswas et al., “Global variation in the prevalence of bullying victimisation amongst adolescents: Role of peer and parental supports,†EClinicalMedicine, vol. 20, no. October, p. 100276, 2020, doi: 10.1016/j.eclinm.2020.100276.
A. Fathoni and B. Prasodjo, “Perundungan Dunia Maya dan Dampaknya Bagi Perkembangan Sosial Remaja,†Fakt. J. Ilm. Kependidikan, vol. 9, no. 3, p. 306, 2022, doi: 10.30998/fjik.v9i3.13054.
M. Ula and S. Fachrurrazi, “Analisis Sentimen Cyberbullying pada Media Sosial Twitter menggunakan Metode Support Vector Machine dan Naïve Bayes Classifier,†TECHSI - J. Tek. Inform., vol. 14, no. 2, p. 91, 2023, doi: 10.29103/techsi.v14i2.12103.
C. M. Putri, A. Anisah, and F. Nazib, “Perundungan Dunia Maya (cyberbullying) dan Cara Mengatasi Perspektif Islam,†J. Pendidik. Agama Islam, vol. 3, no. 1, p. 201, 2024, doi: 10.52434/jpai.v3i1.3746.
T. Ridwansyah, “Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier,†KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 5, pp. 178–185, 2022, doi: 10.30865/klik.v2i5.362.
C. Joergensen E Munthe, N. Astuti Hasibuan, and H. Hutabarat, “Penerapan Algoritma Text Mining Dan TF-RF Dalam Menentukan Promo Produk Pada Marketplace,†Resolusi Rekayasa Tek. Inform. dan Inf., vol. 2, no. 3, pp. 110–115, 2022, doi: 10.30865/resolusi.v2i3.309.
M. A. A. Putri, “ANALISIS SENTIMEN CYBERBULLYING KPOP DI MEDIA SOSIAL TWITTER MENGGUNAKAN METODE NAIVE BAYES,†ה×רץ, vol. 7, no. 8.5.2017, pp. 2003–2005, 2022, [Online]. Available: www.aging-us.com
N. Hanisah, B. Ramadi, U. Islam, N. Sumatera, and M. Sosial, “ISSN 3031-0369 1 Jurnal Hukum dan Kewarganegaraan,†pp. 1–16, 2023.
M. S. Hasibuan and Suhardi, “Analisis Sentimen Kebijakan Vaksin Covid-19 Menggunakan SVM dan C4.5,†J. Tek. Elektro Dan Komput. TRIAC, pp. 19–21, 2022.
I. Widaningrum, D. Mustikasari, R. Arifin, S. L. Tsaqila, and D. Fatmawati, “Algoritma Term Frequency-Inverse Document Frequency (TF-IDF) dan K-Means Clustering Untuk Menentukan Kategori Dokumen,†Pros. Semin. Nas. Sist. Inf. dan Teknol., pp. 145–149, 2022.
F. Pratama, M. Nasir, and S. Sauda, “Implementasi Metode Klasifikasi Dengan Algoritma Support Vector Machine Untuk Menentukan Stok Persediaan Barang Pada Koperasi Karyawan Pangan Utama,†J. Softw. Eng. Ampera, vol. 1, no. 2, pp. 71–81, 2020, doi: 10.51519/journalsea.v1i2.46.
S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),†J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).