Optimization of Perfume Sales through Data Mining with K-Means Algorithm

 (*)Mia Setya Rahayu Mail (Universitas Amikom Purwokerto, Purwokerto, Indonesia)
 Ika Romadoni Yunita (Universitas Amikom Purwokerto, Purwokerto, Indonesia)
 Chyntia Raras Ajeng Widiawati (Universitas Amikom Purwokerto, Purwokerto, Indonesia)

(*) Corresponding Author

Submitted: July 5, 2024; Published: July 27, 2024

Abstract

This time the research used the abc Parfume shop as the research site. This store offers various types of perfumes with different variants because, there are many variants so that not all perfumes sell quickly and some even do not sell at all. To recap sales and expenses in abc stores is still done manually so that it often causes mistakes in increasing stock and hinders the development of marketing strategies. The data that has been collected should be used as a decision-making system to solve business problems. For this reason, the author conducts data mining calculations that are carried out automatically in the hope of providing effective and maximum results in analyzing perfume sales at abc perfume stores. The application of Data Mining in collaboration with the K-Means Algorithm has proven to provide the best analysis and be a solution in developing the perfume business. The results of this study divided the clustering into three clusters for the final result there were nine cluster projects with nine products, cluster two with three products, and cluster three or the last cluster with thirteen products from a total of twenty-five data collected. The results of each cluster are grouped such as Cluster One which is the best seller, Cluster two is grouped to the middle position because sales are stable, while products in Cluster Cluster three are less in demand. This research was successfully conducted and contributed to a deeper understanding of the K-Means algorithm.

Keywords


Data Mining; K-Means; Algorithm; Shop Parfum; Clustering

Full Text:

PDF


Article Metrics

Abstract view : 201 times
PDF - 120 times

References

M. A. Sembiring et al., “PENERAPAN METODE ALGORITMA K-MEANS CLUSTERING UNTUK PEMETAAN PENYEBARAN PENYAKIT DEMAM BERDARAH DENGUE (DBD),” 2021. [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR

T. Asy Aria, M. Julkarnain, and F. Hamdani, “KLIK: Kajian Ilmiah Informatika dan Komputer Penerapan Algoritma K-Means Clustering Untuk Data Obat,” Media Online, vol. 4, no. 1, pp. 649–657, 2023, doi: 10.30865/klik.v4i1.1117.

P. Marpaung, I. Febrian, W. Putri, and E. P. Korespondensi, “Penerapan Data Mining Dalam Menentukan Tingkat Kedisiplinan Karyawan Perhotelan Menggunakan Algoritma K-Means Clustering,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI, vol. 7, no. 1, pp. 167–172, 2024.

P. Apriyani, A. R. Dikananda, and I. Ali, “Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi,” Hello World Jurnal Ilmu Komputer, vol. 2, no. 1, pp. 20–33, Mar. 2023, doi: 10.56211/helloworld.v2i1.230.

D. Marcelina, A. Kurnia, and T. Terttiaavini, “Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, pp. 293–301, Nov. 2023, doi: 10.57152/malcom.v3i2.952.

N. D. Rahayu, A. H. Anshor, I. Afriantoro, and A. Halim Anshor, “Penerapan Data Mining untuk Pemetaan Siswa Berprestasi menggunakan Metode Clustering K-Means Oleh : Penerapan Data Mining untuk Pemetaan Siswa Berprestasi menggunakan Metode Clustering K-Means,” JUKI : Jurnal Komputer dan Informatika, vol. 6, 2024.

J. Faran and A. Triayudi, “KLIK: Kajian Ilmiah Informatika dan Komputer Penerapan Algoritma K-Means Data Mining untuk Clustering Kinerja Karyawan Koperasi,” Media Online, vol. 4, no. 4, 2024, doi: 10.30865/klik.v4i4.1728.

M. Djaka Permana, A. Lia Hananto, E. Novalia, B. Huda, and T. Paryono, “Klasterisasi Data Jamaah Umrah pada Tanurmutmainah Tour Menggunakan Algoritma K-Means,” Jurnal KomtekInfo, pp. 15–20, Feb. 2023, doi: 10.35134/komtekinfo.v10i1.332.

A. Yudhistira and R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” Journal of Artificial Intelligence and Technology Information (JAITI), vol. 1, no. 1, pp. 20–28, Feb. 2023, doi: 10.58602/jaiti.v1i1.22.

R. Alhapizi, M. Nasir, and I. Effendy, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Universitas Bina Darma Palembang,” 2020. [Online]. Available: https://journal-computing.org/index.php/journal-sea/index

Preddy, P. Marpaung, I. Pebrian, and W. Putri, “Penerapan Data Mining Untuk Pengelompokan Kepadatan Penduduk Kabupaten Deli Serdang Menggunakan Algoritma K-Means,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), vol. 6, no. 2, pp. 64–70, 2023.

D. F. Pasaribu, I. S. Damanik, E. Irawan, Suhada, and H. S. Tambunan, “Memanfaatkan Algoritma K-Means Dalam Memetakan Potensi Hasil Produksi Kelapa Sawit PTPN IV Marihat,” BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 2, no. 1, pp. 11–20, Mar. 2021, doi: 10.37148/bios.v2i1.17.

R. Kurniawan, M. S. Hasibuan, and R. Hasibuan, “KLIK: Kajian Ilmiah Informatika dan Komputer Klasterisasi Wilayah Prioritas Vaksin Menggunakan Algoritma K-Means Clustering,” Media Online, vol. 4, no. 3, pp. 1585–1592, 2023, doi: 10.30865/klik.v4i3.1334.

T. M. M. Tyas and A. I. Purnamasari, “Penerapan Algoritma K-means dalam Mengelompokkan Demam Berdarah Dengue Berdasarkan Kabupaten,” Blend Sains Jurnal Teknik, vol. 1, no. 4, pp. 277–283, Mar. 2023, doi: 10.56211/blendsains.v1i4.231.

H. Syahputra, “Clustering Tingkat Penjualan Menu (Food and Beverage) Menggunakan Algoritma K-Means,” Jurnal KomtekInfo, pp. 29–33, Mar. 2022, doi: 10.35134/komtekinfo.v9i1.274.

E. Safitri, “Implementasi Algoritma K-Means Clustering Dalam Menentukan Strategi Marketing Dalam Penjualan Ikan (Studi Kasus: Grosir Ikan Tani Mas Tanjung Morawa),” JIKTEKS : Jurnal Ilmu Komputer dan Teknologi Informasi, vol. 02, no. 02, pp. 23–33, 2024.

E. Yolanda, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Data Pasien Rehabilitasi Narkoba,” Media Online), vol. 4, no. 1, pp. 182–191, 2023, doi: 10.30865/klik.v4i1.1107.

J. Wijaya, T. Magdalena, A. Januaviani, and K. Kunci, “CLUSTERING FAKTOR STRES PADA MAHASISWA AKTIF MENGGUNAKAN ALGORITMA K-MEANS DAN K-MODES,” Multidisciplinary Scientific Journal, vol. 2, 2024.

Z. Sitorus, “PENERAPAN DATA MINING UNTUK CLUSTERING PENDUDUK MISKIN DI KOTA TANJUNGBALAI MENGGUNAKAN METODE ALGORITMA K-MEANS,” 2024. [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR

D. Ariyanto, “Data Mining Menggunakan Algoritma K-Means untuk Klasifikasi Penyakit Infeksi Saluran Pernafasan Akut,” Jurnal Sistim Informasi dan Teknologi, pp. 13–18, Feb. 2022, doi: 10.37034/jsisfotek.v4i1.117.

Adam Rifais and T. G. Laksana, “Penerapan Algoritma K-Means Clustering Untuk Mengetahui Kemampuan Akademik Siswa Berbasis WEB,” Jurnal Ilmiah Multidisiplin, vol. 1, no. 2, pp. 157–183, Feb. 2024, doi: 10.62282/juilmu.v1i2.157-183.

M. Rizqi Sulistio, N. Suarna, and O. Nurdiawan, “Analisa Penerapan Metode Clustering X-Means Dalam Pengelompokan Penjualan Barang,” Jurnal Teknologi Ilmu Komputer, vol. 1, no. 2, pp. 37–42, 2023, doi: 10.56854/jtik.v1i2.49.

T. Hidayat, “Klasifikasi Data Jamaah Umroh Menggunakan Metode K-Means Clustering,” Jurnal Sistim Informasi dan Teknologi, pp. 19–24, Feb. 2022, doi: 10.37034/jsisfotek.v4i1.115.

R. Fauziah and A. I. Purnamasari, “Implementasi Algoritma K-Means pada Kasus Kekerasan Anak dan Perempuan Berdasarkan Usia,” Hello World Jurnal Ilmu Komputer, vol. 2, no. 1, pp. 34–41, Mar. 2023, doi: 10.56211/helloworld.v2i1.232.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.