Implementasi Algoritma Naive Bayes Terhadap Klasifikasi Jenis Pertanyaan Pada Perancangan Chatbot Untuk Aplikasi Penjualan Songket

 Adelia Rosa (Politeknik Negeri Sriwijaya, Palembang, Indonesia)
 (*)Irma Salamah Mail (Politeknik Negeri Sriwijaya, Palembang, Indonesia)
 Suroso Suroso (Politeknik Negeri Sriwijaya, Palembang, Indonesia)

(*) Corresponding Author

Submitted: July 3, 2024; Published: July 27, 2024

Abstract

Rapid developments in science and technology have had a significant impact on all aspects of people's lives, especially in business. E-commerce has become a popular choice among internet users in Indonesia, including MSMEs. However, conventional sales of songket products still limit product reach and competitiveness. In addition, the sales process generally provides customer service in charge of interacting and serving customer inquiries that can be contacted via telephone number. However, it is considered less effective because the seller has difficulty when responding to various questions from customers, so customers have to wait to get answers regarding the information needed. Therefore, the purpose of this research is to design a chatbot for songket sales applications using the naive bayes algorithm in classifying the types of customer questions, to improve the efficiency and effectiveness of interactions between sellers and customers, and expand the market reach of songket products. This chatbot is designed to simulate interactive conversations and provide sales information to customers quickly and efficiently. The naive bayes algorithm was chosen due to its ease of implementation and high accuracy in text classification. In this study, the chatbot was tested with various types of user questions with 5% of the total 50 questions as testing data. The test results show that the chatbot can classify the type of question with an accuracy of 90% and a precision value of 94%, recall 92%, and F1-Score 92%. In addition, testing of the application system as a whole shows that the application and chatbot are able to provide appropriate and efficient responses to various user questions. With this system, it is hoped that a technology-based solution can be realized that can improve the sales process and customer interaction with sellers, and increase the business potential of traditional songket craftsmen. 

Keywords


Chatbot; Naive Bayes; E-commerce; Songket; Application

Full Text:

PDF


Article Metrics

Abstract view : 152 times
PDF - 213 times

References

D. A. Rabbani and F. U. Najicha, “Pengaruh Perkembangan Teknologi terhadap Kehidupan dan Interaksi Sosial Masyarakat Indonesia,” Researchgate.Net, no. November, pp. 0–13, 2023, [Online]. Available: https://www.researchgate.net/profile/DanaRabbani/publication/375525102_Pengaruh_Perkembangan_Teknologi_terhadap_Kehidupan_dan_Interaksi_Sosial_Masyarakat_Indonesia/links/654dcc8dce88b87031d8db65/Pengaruh-Perkembangan-Teknologi-terhadap-Kehidupan-dan-Inte

C. A. Teodorescu, A.-N. Ciucu Durnoi, and V. M. Vargas, “The Rise of the Mobile Internet: Tracing the Evolution of Portable Devices,” Proc. Int. Conf. Bus. Excell., vol. 17, no. 1, pp. 1645–1654, 2023, doi: 10.2478/picbe-2023-0147.

F. Fathoni, H. Yunus, M. Randika, and D. Ramadhan, “Songketshop: Mobile Application Penjualan Pengrajin Songket Palembang dengan Pendekatan Customer Relationship Management,” Semin. Nas. …, pp. 461–469, 2019, [Online]. Available:http://publikasi.dinus.ac.id/index.php/semnastik/article/view/2950%0Ahttp://publikasi.dinus.ac.id/index.php/semnastik/article/viewFile/2950/1772

E. F. Zakiyah, A. B. P. Kasmo, and L. Nugroho, “Peran Dan Fungsi Usaha Mikro Kecil Dan Menengah (Umkm) Dalam Memitigasi Resesi Ekonomi Global 2023,” J. Cakrawala Ilm., vol. 2, no. 4, pp. 1–12, 2022.

Institute for Development of Economics and Finance (INDEF), “Peran Platform Digital Terhadap Pengembangan Umkm Di Indonesia,” pp. 10–40, 2024.

G. Kasuma, R. Andini, and I. M Anwari, “Cultural Traditions And Economics Dinamycs Of The Songket Weaving Craftmen In Palembang,” no. January 2020, 2020, doi: 10.4108/eai.20-9-2019.2296679.

H. Hidayat, G. Gunadi, L. Arlangga, and F. Yulianti, “Pengelolaan Kain Tenun Songket Khas Palembang Di Desa Pedu Kabupaten Jejawi Kecamatan Ogan Komering Ilir (Oki),” SPEKTA (Jurnal Pengabdi. Kpd. Masy. Teknol. dan Apl., vol. 1, no. 1, p. 21, 2020, doi: 10.12928/spekta.v1i1.2691.

M. D. Mahendra, E. Rasywir, and L. Prasasti, “Implementasi Chatbot Sebagai Layanan Customer Service Pada Kafe Duniawi Coffee,” SAINTEKS J. Teknol. Komput. dan Sains, vol. 1, no. 1, pp. 16–24, 2023, [Online]. Available: https://prosiding.seminars.id/sainteks

B. El Bakkouri, S. Raki, and T. Belgnaoui, “The Role of Chatbots in Enhancing Customer Experience: Literature Review,” Procedia Comput. Sci., vol. 203, pp. 432–437, 2022, doi: 10.1016/j.procs.2022.07.057.

S. U. Hassan, J. Ahamed, and K. Ahmad, “Analytics of machine learning-based algorithms for text classification,” Sustain. Oper. Comput., vol. 3, no. July 2021, pp. 238–248, 2022, doi: 10.1016/j.susoc.2022.03.001.

N. Rezaeian and G. Novikova, “Persian text classification using naive bayes algorithms and support vector machine algorithm,” Indones. J. Electr. Eng. Informatics, vol. 8, no. 1, pp. 178–188, 2020, doi: 10.11591/ijeei.v8i1.1696.

L. A. Fudholi, N. Rahaningsih, and R. D. Dana, “Sentimen Analisis Perilaku Penggemar Coldplay di Media Sosial,” vol. 8, no. 3, pp. 4150–4159, 2024.

M. Anggraeni, M. Syafrullah, and H. A. Damanik, “Literation Hearing Impairment (I-Chat Bot): Natural Language Processing (NLP) and Naïve Bayes Method,” J. Phys. Conf. Ser., vol. 1201, no. 1, 2019, doi: 10.1088/1742-6596/1201/1/012057.

R. C. Hutama, F. Fauziah, and R. T. Komalasari, “Aplikasi Chatbot Berbasis Teks Menggunakan Algoritma Naive Bayes Classifier FAQ GrabAds,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 6, no. 1, p. 90, 2021, doi: 10.30998/string.v6i1.9919.

R. Muhtar et al., “Multinomial Naïve Bayes and Rapid Automatic Keywords Extraction for Taharah (Purify) Law Chatbot,” 2019, doi: 10.4108/eai.11-7-2019.2298028.

A. Erfina and M. R. N. R. Alamsyah, “Implementation of Naive Bayes classification algorithm for Twitter user sentiment analysis on ChatGPT using Python programming language,” Data Metadata, vol. 2, pp. 2–11, 2023, doi: 10.56294/dm202345.

K. Aelani and G. Gustaman, “Chatbot for Information Service of New Student Admission Using Multinomial Naïve Bayes Classification and TF-IDF Weighting,” Proc. 2nd Int. Semin. Sci. Appl. Technol. (ISSAT 2021), vol. 207, no. Issat, pp. 115–122, 2021, doi: 10.2991/aer.k.211106.019.

E. Elmerillia, L. Lindawati, and I. Salamah, “Web-based Application Forecasting of Components and Tools for Practicum in Telecommunication Engineering Laboratory/ Workshop of State Polytechnic of Sriwijaya,” Elkha, vol. 13, no. 2, p. 97, 2021, doi: 10.26418/elkha.v13i2.48029.

S. D. Jadhav and H. P. Channe, “Comparative Study of K-NN, Naive Bayes and Decision Tree Classification Techniques,” Int. J. Sci. Res., vol. 5, no. 1, pp. 1842–1845, 2016, doi: 10.21275/v5i1.nov153131.

Rayuwati, Husna Gemasih, and Irma Nizar, “Implementasi Algoritma Naive Bayes untuk Memprediksi Tingkat Penyebaran Covid-19 di Indonesia,” Jural Ris. Rumpun Ilmu Tek., vol. 1, no. 1, pp. 38–46, 2022, doi: 10.55606/jurritek.v1i1.127.

W. Salsabila, A. Taqwa, and L. Lindawati, “Rancangan Aplikasi Pengelolaan Event, Pemesanan E-Tiket dan E-Sertifikat di Politeknik Negeri Sriwijaya,” J. Media Inform. Budidarma, vol. 6, no. 4, p. 1969, 2022, doi: 10.30865/mib.v6i4.4470.

M. M. Maruzi, D. Iskandar, and Y. I. Kurniawan, “Android-Based Shuttle Order Application Using Framework Flutter,” J. Tek. Inform., vol. 3, no. 2, pp. 465–472, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.2.150

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.