Prediksi Cuaca Kabupaten Sleman Menggunakan Algoritma Random Forest
Abstract
Keywords
Full Text:
PDFReferences
L. Malihah, “Tantangan Dalam Upaya Mengatasi Dampak Perubahan Iklim Dan Mendukung Pembangunan Ekonomi Berkelanjutan: Sebuah Tinjauan,†Jurnal Kebijakan Pembangunan, vol. 17, no. 2, pp. 219–232, Dec. 2022, doi: 10.47441/jkp.v17i2.272.
A. M. Siregar, “Klasifikasi Untuk Prediksi Cuaca Menggunakan Esemble Learning,†PETIR, vol. 13, no. 2, pp. 138–147, Sep. 2020, doi: 10.33322/petir.v13i2.998.
G. H. Sandi and Y. Fatma, “PEMANFAATAN TEKNOLOGI INTERNET OF THINGS (IOT) PADA BIDANG PERTANIAN,†Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 1, 2023.
L. Gardashova and S. Jabrayilova, “Weather forecasting using big data,†InterConf, no. 32(151), pp. 629–634, Apr. 2023, doi: 10.51582/interconf.19-20.04.2023.067.
S. Huang, E. Ailer, N. Kilbertus, and N. Pfister, “Supervised learning and model analysis with compositional data,†PLoS Comput Biol, vol. 19, no. 6 June, Jun. 2023, doi: 10.1371/journal.pcbi.1011240.
P. Santoso, H. Abijono, and N. L. Anggreini, “ALGORITMA SUPERVISED LEARNING DAN UNSUPERVISED LEARNING DALAM PENGOLAHAN DATA,†Unira Malang |, vol. 4, no. 2, 2021.
R. Supriyadi, W. Gata, N. Maulidah, A. Fauzi, I. Komputer, and S. Nusa Mandiri Jalan Margonda Raya No, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,†vol. 13, no. 2, pp. 67–75, 2020.
T. Agustina, M. Masrizal, and I. Irmayanti, “Performance Analysis of Random Forest Algorithm for Network Anomaly Detection using Feature Selection,†sinkron, vol. 8, no. 2, Apr. 2024, doi: 10.33395/sinkron.v8i2.13625.
H. Wu, “Comparison of Random Forest and LSTM in Stock Prediction,†Advances in Economics, Management and Political Sciences, vol. 86, no. 1, pp. 28–34, May 2024, doi: 10.54254/2754-1169/86/20240936.
R. Mardianto, Stefanie Quinevera, and S. Rochimah, “Perbandingan Metode Random Forest, Convolutional Neural Network, dan Support Vector Machine Untuk Klasifikasi Jenis Mangga,†Journal of Applied Computer Science and Technology, vol. 5, no. 1, pp. 63–71, May 2024, doi: 10.52158/jacost.v5i1.742.
I. Irawan, R. Qisthiano, M. Syahril, and P. M. Jakak, “Optimasi Prediksi Kelulusan Tepat Waktu: Studi Perbandingan Algoritma Random Forest dan Algoritma K-NN Berbasis PSO,†Jurnal Pengembangan Sistem Informasi dan Informatika, vol. 4, no. 4, 2023.
R. Meenal, P. A. Michael, D. Pamela, and E. Rajasekaran, “Weather prediction using random forest machine learning model,†Indonesian Journal of Electrical Engineering and Computer Science, vol. 22, no. 2, pp. 1208–1215, May 2021, doi: 10.11591/ijeecs.v22.i2.pp1208-1215.
Z. A. Dwiyanti and C. Prianto, “Prediksi Cuaca Kota Jakarta Menggunakan Metode Random Forest,†Jurnal Tekno Insentif, vol. 17, no. 2, pp. 127–137, Oct. 2023, doi: 10.36787/jti.v17i2.1136.
M. I. Bendi, “Informasi Peringatan Dini Potensi Kekeringan Meteorologis Provinsi Nusa Tenggara Timur,†Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), vol. 7, no. 1, pp. 46–91, 2024.
Farhanuddin, Sarah Ennola Karina Sihombing, and Yahfizham, “Komparasi Multiple Linear Regression dan Random Forest Regression Dalam Memprediksi Anggaran Biaya Manajemen Proyek Sistem Informasi,†Journal of Computers and Digital Business, vol. 3, no. 2, pp. 86–97, May 2024, doi: 10.56427/jcbd.v3i2.408.
Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,†Jurnal KomtekInfo, pp. 1–7, Jan. 2023, doi: 10.35134/komtekinfo.v10i1.330.
A. Putri, C. Syaficha Hardiana, E. Novfuja, F. Try Puspa Siregar, Y. Fatma, and R. Wahyuni, “Comparison of K-NN, Naive Bayes and SVM Algorithms for Final-Year Student Graduation Prediction Komparasi Algoritma K-NN, Naive Bayes dan SVM untuk Prediksi Kelulusan Mahasiswa Tingkat Akhir,†Institut Riset dan Publikasi Indonesia (IRPI) MALCOM: Indonesian Journal of Machine Learning and Computer Science Journal Homepage, vol. 3, no. 1, pp. 20–26, 2023.
M. Iqbal Baihaqi, A. Syaripudin, and F. Agung Nugroho, “Implementation Of The Random Forest Algorithm In Stock Price Predictions Based On Historical Data Implementasi Algoritma Random Forest Pada Prediksi Harga Saham Berdasarkan Data Historis,†Jubitek: JURNAL BIG DATA DAN TEKNOLOGI INFORMASI, vol. 1, pp. 42–51, 2023.
A. Prandika Siregar, D. Priyadi Purba, J. Putri Pasaribu, K. Reza Bakara, and J. V Willem Iskandar Pasar Medan Estate, “Implementasi Algoritma Random Forest Dalam Klasifikasi Diagnosis Penyakit Stroke,†Jurnal Penelitian Rumpun Ilmu Teknik (JUPRIT), vol. 2, no. 4, pp. 155–164, 2023, doi: 10.55606/juprit.v2i4.3039.
D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,†PeerJ Comput Sci, vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623.
H. Sinaga, A. Army, M. Duha, J. Banjarnahor, and S. H. Sinaga, “ANALISIS PREDIKSI DETEKSI STROKE DENGAN PENDEKATAN EDA DAN PERBANDINGAN ALGORITMA MACHINE LEARNING,†Jurnal Ilmiah Betrik, vol. 14, no. 2, 2023.
DOI: https://doi.org/10.30865/mib.v8i3.7897
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.