https://eurogeojournal.eu/ https://jurnal.pendidikanbiologiukaw.ac.id/
https://e-kerja.bnpp.go.id/bkp/https://journal.dkpp.go.id/wow/https://ppid.dkpp.go.id/_fungsi/dana/https://jurnal.pendidikanbiologiukaw.ac.id/https://e-kerja.bnpp.go.id/Pengawas/demo/https://jos.unsoed.ac.id/stats/2024/https://journal.umkendari.ac.id/dm/https://jurnal.radenfatah.ac.id/demo/https://journal.ar-raniry.ac.id/lap/https://sipeg.ui.ac.id/dm/https://e-kerja.bnpp.go.id/Pengawas/dana/
slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor
Analisis Perbandingan Prediksi Tingkat Kemiskinan Menggunakan Metode XGBoost dan Random Forest Regression | Prastiyo | JURNAL MEDIA INFORMATIKA BUDIDARMA

Analisis Perbandingan Prediksi Tingkat Kemiskinan Menggunakan Metode XGBoost dan Random Forest Regression

Isnan Wisnu Prastiyo, Arafat Febriandirza

Abstract


This research aims to compare the performance of two prediction algorithms, XGBoost Regression and Random Forest Regression, in predicting poverty levels in the DKI Jakarta area. For this research, researchers obtained data from the DKI Jakarta Central Statistics Agency (BPS) covering the period 2010 to 2023. The testing method used involved measuring Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) to assess the accuracy of predictions from the two algorithms. . The findings show that the Random Forest Regression algorithm generally produces more accurate predictions compared to the XGBoost Regression algorithm as seen from the test results on (MSE) and (MAPE) for most of the areas analyzed. As with MAPE for the West Jakarta area, the test results for XGBoost Regression were 1.43, while Random Forest Regression produced 1.42, so Random Forest Regression is better than XGBosst Regression. However, in the Seribu Islands, the MAPE for XGBoost is better with a value of 4.49 than for Random Forest Regression which has a value of 4.56. Then MSE Random Forest is better than XGBoost in this prediction test. For example, in the Central Jakarta area with a value of 0.02 for XGBoost Regression, while Random Forest Regression has a smaller test result with a value of 0.01.

Keywords


Prediction; XGBoost Regression; Random Forest Regression; Poverty level; DKI Jakarta; MSE; MAPE

Full Text:

PDF

References


Syaharuddin, E. Pujiana, I. P. Sari, V. M. Mardika, and M. Putri, “Analisis Algoritma Back Propagation Dalam Prediksi Angka Kemiskinan Di Indonesia,†CESS (Journal Comput. Eng. Syst. Sci., vol. 4, no. 2, pp. 198–207, 2020, [Online]. Available: https://jurnal.unimed.ac.id/2012/index.php/cess/article/view/13601/pdf

Devi Arfiani, Berantas Kemiskinan, Digital 20. ALPRIN, 2020. [Online]. Available: https://www.google.co.id/books/edition/Berantas_Kemiskinan/xnn7DwAAQBAJ?hl=id&gbpv=1

R. B. Budhijana, “Analisis Pengaruh Pertumbuhan Ekonomi, Index Pembangunan Manusia (IPM) dan Pengangguran Terhadap Tingkat Kemiskinan Di Indonesia Tahun 2000-2017,†J. Ekon. Manaj. dan Perbank. (Journal Econ. Manag. Banking), vol. 5, no. 1, p. 36, 2020, doi: 10.35384/jemp.v5i1.170.

D. A. Mukmin, R. Irsyada, and H. A. Audytra, “Penerapan Metode Moving Average Pada Sistem Informasi Prediksi Angka Kemiskinan,†Multidiscip. Appl. Quantum Inf. Sci., vol. 1, no. 1, pp. 43–49, 2022, doi: 10.32665/almantiq.v1i1.330.

R. B. Praja, M. Muchtar, and P. R. Sihombing, “Analisis Pengaruh Indeks Pembangunan Manusia, Laju Pertumbuhan Penduduk, dan Tingkat Pengangguran Terbuka terhadap Kemiskinan di DKI Jakarta,†Ecoplan, vol. 6, no. 1, pp. 78–86, 2023, doi: 10.20527/ecoplan.v6i2.656.

Eka Wati, “Analisis Pengaruh Tingkat Pengangguran Terbuka, Indeks Pembangunan Manusia, PDRB Terhadap Kemiskinan di Provinsi DKI Jakarta Tahun 2017-2022,†Nucl. Phys., vol. 13, no. 1, pp. 104–116, 2023.

deris desmawan reza maulana, “Analisis Faktor-Faktor Yang Mempengaruhi Tingkat Kemiskinan Di Pulau Jawa tahun 2018-2022,†vol. 7, pp. 29433–29440, 2023, [Online]. Available: http://repository.upnjatim.ac.id/11258/

N. A. Tanamal, “Analisa Faktor Kemiskinan Warga Kampung Ujung Cipinang Besar Selatan (Manusia Kuburan) Jakarta Timur,†J. Rev. Pendidik. dan Pengajaran, vol. 5, no. 1, pp. 89–97, 2022, doi: 10.31004/jrpp.v5i1.4745.

S. T. W. Ariyanto, A. Tjalla, and M. Mahdiyah, “Analisis Pengaruh Meningkatnya Jumlah Kemiskinan di Jakarta Dalam 20 Tahun Terakhir Terhadap Jumlah Kriminalitas di Wilayah Hukum Polda Metro Jaya,†J. Litbang Polri, vol. 26, no. 2, pp. 50–55, 2023, doi: 10.46976/litbangpolri.v26i2.200.

M. Fuad, F. 1, and M. U. Basuki, “Analisis Faktor-Faktor Yang Mempengaruhi Kerentanan Kemiskinan Relatif Di Kota Jakarta Barat Tahun 2018,†Diponegoro J. Econ., vol. 9, no. 2, p. 168, 2020, [Online]. Available: https://ejournal2.undip.ac.id/index.php/dje

F. Kusuma, M. Ahsan, and S. Syahminan, “Prediksi Jumlah Penduduk Miskin Indonesia menggunakan Metode Single Moving Average dan Double Moving Average,†J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, p. 105, 2021, doi: 10.36499/jinrpl.v3i2.4594.

A. Alfani W.P.R., F. Rozi, and F. Sukmana, “Prediksi Penjualan Produk Unilever Menggunakan Metode K-Nearest Neighbor,†JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 1, pp. 155–160, 2021, doi: 10.29100/jipi.v6i1.1910.

Riska Chairunisa, Adiwijaya, and Widi Astuti, “Perbandingan CART dan Random Forest untuk Deteksi Kanker berbasis Klasifikasi Data Microarray,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 805–812, 2020, doi: 10.29207/resti.v4i5.2083.

G. Chairunisa et al., “Life Expectancy Prediction Using Decision Tree, Random Forest, Gradient Boosting, and XGBoost Regressions,†J. Sintak, vol. 2, no. 2, pp. 71–82, 2024, doi: 10.62375/jsintak.v2i2.249.

N. Kurnia Informatika, I. Komputer, U. Singaperbangsa, and K. Abstrak, “Penerapan Peramalan Penjualan Sembako Menggunakan Metode Single Moving Average (Studi Kasus Toko Kelontong Dedeh Retail),†J. Ilm. Wahana Pendidik., vol. 8, no. 17, pp. 307–316, 2022, [Online]. Available: https://doi.org/10.5281/zenodo.7076573

M. H. Elison, R. Asrianto, and Aryanto, “Prediksi Penjualan Papan Bunga Menggunakan Metode Double Exponential Smoothing,†J. Ris. Sist. Inf. dan Teknol. Inf., vol. 2, no. 3, pp. 45–56, 2020, doi: 10.52005/jursistekni.v2i3.60.

H. Faisal, A. Febriandirza, and F. N. Hasan, “Analisis Sentimen Terkait Ulasan Pada Aplikasi PLN Mobile Menggunakan Metode Support Vector Machine,†KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 5, no. 1, pp. 303–312, 2024.

D. Darwis, N. Siskawati, and Z. Abidin, “PENERAPAN ALGORITMA NAIVE BAYES UNTUK ANALISIS SENTIMEN REVIEW DATA TWITTER BMKG NASIONAL,†J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.

A. Nugraha, Y. H. Chrisnanto, and R. Yuniarti, “Prediksi Sentimen Pada Sosial Media Twitter Mengenai Produk Smartphone Menggunakan Algoritma K-NN Classification,†Sensasi, pp. 251–258, 2019.

I. Iqbal Wibowo and A. Febriandirza, “Analisis Sentimen Ulasan Pengguna Game Pubg Di Google Play Store Menggunakan Algoritma Naïve Bayes,†J. Sist. Komput. dan Inform., vol. 5, no. 3, pp. 590–599, 2024, doi: http://dx.doi.org/10.30865/json.v5i3.7264.

G. A. Mursianto, I. M. Falih, M. Irfan, T. Sakinah, and D. S. Prasvita, “Perbandingan Metode Klasifikasi Random Forest dan XGBoost Serta Implementasi Teknik SMOTE pada Kasus Prediksi Hujan,†J. Senamika, vol. 2, no. 2, pp. 41–50, 2021.

N. Nur, F. Wajidi, S. Sulfayanti, and W. Wildayani, “Implementasi Algoritma Random Forest Regression untuk Memprediksi Hasil Panen Padi di Desa Minanga,†J. Komput. Terap., vol. 9, no. 1, pp. 58–64, 2023, doi: 10.35143/jkt.v9i1.5917.

S. Pratista, A. Nazir, I. Iskandar, E. Budianita, and I. Afrianty, “Perbandingan Prediksi Obat Berdasarkan Pemakaian Menggunakan Algoritma Single Moving Average dan Support Vector Regression,†J. Media Inform. Budidarma, vol. 7, no. 4, pp. 1860–1868, 2023, doi: 10.30865/mib.v7i4.6859.




DOI: https://doi.org/10.30865/mib.v8i3.7892

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.