Perbaikan Akurasi Naïve Bayes dengan Chi-Square dan SMOTE Dalam Mengatasi High Dimensional dan Imbalanced Data Banjir
Abstract
Keywords
Full Text:
PDFReferences
Sugiharto S N A, S. Sumaryo, and Kurniawan, “Implementasi pendeteksi dini bahaya banjir,†e-Proceeding Eng., vol. 6, no. 1, pp. 51–58, 2019.
S. Naik, S. A. Patil, A. Verma, and A. Hingmire, “Flood prediction using logistic regression for Kerala state,†Int J Eng Res Technol (IJERT …, vol. 9, no. 3, pp. 2020–2022, 2020, [Online]. Available: https://www.academia.edu/download/66254530/flood_prediction_using_logistic_regression_IJERTCONV9IS03010.pdf
Badan Nasional Penanggulangan Bencana, “Indeks Risiko Bencana Indonesia (IRBI) Tahun 2020,†Badan Nas. Penanggulangan Bencana, p. 78, 2021, [Online]. Available: https://inarisk.bnpb.go.id/pdf/BUKU IRBI 2020 KP.pdf
BPS, “Jumlah Desa_Kelurahan yang Mengalami Bencana Alam_sup_1__sup_ menurut Kecamatan di Kota Samarinda,†Proposal, pp. 4–6, 2024.
N. S. Fatonah, “Penerapan Deteksi Bencana Banjir Menggunakan Metode Machine Learning,†Format J. Ilm. Tek. Inform., vol. 10, no. 2, p. 119, 2021, doi: 10.22441/format.2021.v10.i2.002.
Nicolaus, “JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Journal homepage: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi ANALISA PERBANDINGAN ALGORITMA RANDOM FOREST DAN NAÃVE BAYES UNTUK KLASIFIKASI CURAH HUJAN BERDASARKAN IKLIM DI INDONES,†vol. 9, no. 1, pp. 158–167, 2023, [Online]. Available: https://doi.org/10.29100/jipi.v9i1.4421
D. Fitrianah, W. Gunawan, and A. Puspita Sari, “Studi Komparasi Algoritma Klasifikasi C5.0, SVM dan Naive Bayes dengan Studi Kasus Prediksi Banjir Comparative Study of Classification Algorithm between C5.0, SVM and Naive Bayes with Case Study of Flood Prediction,†Februari, vol. 21, no. 1, pp. 1–11, 2022.
R. Y. Kisworini, “Peningkatan Performa Naive Bayes Dengan Seleksi Atribut Menggunakan Chi Square Untuk Klasifikasi Loyalitas Pelanggan GRAB,†J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 2, no. 2, pp. 69–75, 2020, doi: 10.20895/inista.v2i2.127.
S. Intan and P. Sari, “ANALISIS PENGARUH GAIN RATIO UNTUK ALGORITMA K-NEAREST NEIGHBOR PADA KLASIFIKASI DATA BANJIR DI KOTA SAMARINDA Analysis Of The Effect Of Gain Ratio For Algorithms K-Nearest Neighbor On Classsification Flood Data In Samarinda City,†J. Sains Komput. dan …, vol. 6, no. 1, pp. 54–59, 2023, [Online]. Available: https://journal.umpr.ac.id/index.php/jsakti/article/view/5472%0Ahttps://journal.umpr.ac.id/index.php/jsakti/article/download/5472/3664
H. Ali, M. N. M. Salleh, R. Saedudin, K. Hussain, and M. F. Mushtaq, “Imbalance class problems in data mining: A review,†Indones. J. Electr. Eng. Comput. Sci., vol. 14, no. 3, pp. 1552–1563, 2019, doi: 10.11591/ijeecs.v14.i3.pp1552-1563.
J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,†J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0192-5.
M. Cazacu and E. Titan, “Adapting CRISP-DM for Social Sciences,†BRAIN. Broad Res. Artif. Intell. Neurosci., vol. 11, no. 2sup1, pp. 99–106, 2020, doi: 10.18662/brain/11.2sup1/97.
R. R. R. Arisandi, B. Warsito, and A. R. Hakim, “Aplikasi Naïve Bayes Classifier (Nbc) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K-Fold Cross Validation,†J. Gaussian, vol. 11, no. 1, pp. 130–139, 2022, doi: 10.14710/j.gauss.v11i1.33991.
V. P. K. Turlapati and M. R. Prusty, “Outlier-SMOTE: A refined oversampling technique for improved detection of COVID-19,†Intell. Med., vol. 3–4, no. November, p. 100023, 2020, doi: 10.1016/j.ibmed.2020.100023.
M. Afriansyah, J. Saputra, Y. Sa’adati, and Valian Yoga Pudya Ardhana, “Optimasi Algoritma Nai?ve Bayes Untuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB,†Bull. Comput. Sci. Res., vol. 3, no. 3, pp. 242–249, 2023, doi: 10.47065/bulletincsr.v3i3.251.
Hairani, N. A. Setiawan, and T. B. Adji, “Metode Klasifikasi Data Mining dan Teknik Sampling Smote ... (Hairani dkk.),†Semin. Nas. Sains dan Teknol., pp. 168–172, 2019.
E. B. Fatima, O. Boutkhoum, E. M. Abdelmajid, F. Rustam, A. Mehmood, and G. S. Choi, “Minimizing the Overlapping Degree to Improve Class-Imbalanced Learning under Sparse Feature Selection: Application to Fraud Detection,†IEEE Access, vol. 9, pp. 28101–28110, 2021, doi: 10.1109/ACCESS.2021.3056285.
A. Nisa, E. Darwiyanto, and I. Asror, “Analisis Sentimen Menggunakan Naive Bayes Classifier dengan Chi-Square Feature Selection Terhadap Penyedia Layanan Telekomunikasi,†e-Proceeding Eng. , vol. 6, no. 2, pp. 8650–8659, 2019.
M. Tsani, A. Rupaka, L. Asmoro, and B. Pradana, “Analisis Sentimen Review Transportasi Menggunakan Algoritma Support Vector Machine Berbasis Chi Square,†Smart Comp Jurnalnya Orang Pint. Komput., vol. 9, no. 1, pp. 35–39, 2020, doi: 10.30591/smartcomp.v9i1.1817.
M. K. Taghfirul Azhima Yoga Siswa, S.Kom., DATA MINING: MENGUPAS TUNTAS ANALISIS DATA DENGAN METODE KLASIFIKASI HINGGA DEPLOYMENT APLIKASI MENGGUNAKAN PYTHON, Edisi Pert. Samarinda: UMKT PRESS, 2023.
DOI: https://doi.org/10.30865/mib.v8i3.7886
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.