Analisis Tingkat Kemiskinan di Indonesia Menggunakan Model Vanilla Long Short-Term Memory dan Stacked Long Short-Term Memory

Rizqi Al Fajar, Theopilus Bayu Sasongko

Abstract


Indonesia, as the fourth most populous country in the world and a developing nation, faces significant challenges in addressing widespread poverty. Poverty is a condition where individuals or groups have limited access to adequate economic resources, quality food, healthcare services, and education. Despite government efforts to implement programs aimed at reducing poverty levels in Indonesia, these programs have often been ineffective and poorly targeted. The objective of this research is to compare the performance of two Long Short-Term Memory (LSTM) models, Vanilla LSTM and Stacked LSTM, in analyzing poverty levels in Indonesia. The data used for this study is from the year 2021 and encompasses 514 cities across Indonesia. This data includes variables such as the percentage of the impoverished population, regional gross domestic product, life expectancy, average years of schooling, and per capita expenditure, all of which are relevant to Indonesia's economic and social conditions.The research employs Vanilla LSTM and Stacked LSTM models. Evaluation is conducted using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Normalized Root Mean Squared Error (NRMSE), and Mean Absolute Error (MAE) as the main metrics to measure the accuracy of the model predictions. The results indicate that Vanilla LSTM consistently outperforms Stacked LSTM, achieving an MSE of 0.0109, RMSE of 0.1046, NRMSE of 0.1334, and MAE of 0.0795. In contrast, Stacked LSTM shows an MSE of 0.0119, RMSE of 0.1091, NRMSE of 0.1391, and MAE of 0.0833. These findings suggest that Vanilla LSTM has lower and more stable prediction errors and is more accurate in estimating poverty levels. Vanilla LSTM is therefore a better choice for analyzing and reducing poverty levels in Indonesia. This model can serve as an effective tool for policymakers to design more efficient and targeted strategies to reduce poverty rates.

Keywords


Poverty; Long Short-Term Memory; Vanilla LSTM; Stacked LSTM; Evaluation

Full Text:

PDF

References


S. Pramudya Wicaksono And M. Hutajulu, “Analisis Faktor-Faktor Yang Mempengaruhi Kemiskinan Di Indonesia Tahun 1999-2020,†Bisnis Dan Keuangan Transekonomika | Volume, Vol. 3, No. 2, 2023, [Online]. Available: Https://Transpublika.Co.Id/Ojs/Index.Php/Transekonomika. , Doi: 10.55047/Transekonomika.V3i2.393.

A. Indrasetianingsih, K. Wasik, And A. B. Surabaya, “Model Regresi Data Panel Untuk Mengetahui Faktor Yang Mempengaruhi Tingkat Kemiskinan Di Pulau Madura,†Jurnal Gaussian, Vol. 9, No. 3, Pp. 355–363, 2020, [Online]. Available: Https://Ejournal3.Undip.Ac.Id/Index.Php/Gaussian/ , Doi.Org/10.14710/J.Gauss.9.3.355-363.

A. R. Baqri, J. S. Putra, And K. Karimullah, “Hubungan Antara Dukungan Religius Dengan Kualitas Hidup Pada Remaja Miskin,†Indonesian Journal For The Psychology Of Religion, Vol. 1, No. 1, Jan. 2021, Doi: 10.24854/Ijpr395.

K. Wulandari And J. Ilmu Ekonomi Fakultas Ekonomi Universitas Negeri Padang, “Analisis Kondisi Sosial Ekonomi Terhadap Penerima Bantuan Kartu Keluarga Sejahtera (Kks) Di Sumatera Barat,†Jurnal Ilmiah Ekonomi Dan Pembangunan, Vol. 12, No. 1, Pp. 77–85, 2023, [Online]. Available: Http://Ejournal.Unp.Ac.Id/Index.Php/Ekosains , Doi: 10.24036/Ecosains.12291357.00.

J. Arifin Pusat Penelitian Dan Pengembangan Kesejahteraan Sosial, K. R. Sosial Gd Cawang Kencana Lt, J. Mayjen Sutoyo, And J. Timur, “Budaya Kemiskinan Dalam Penanggulangan Kemiskinan Di Indonesia Culture Of Poverty In Poverty Reduction In Indonesia,†Kesejahteraan Sosial, 2020 Vol. 6 No. 02, (2020).

A. Sofianto, “Implementasi Program Keluarga Harapan (Pkh) Di Provinsi Jawa Tengah,†Sosio Konsepsia, Vol. 10, No. 1, Dec. 2020, Doi: 10.33007/Ska.V10i1.2091.

F. Andrianus And K. Alfatih, “Pengaruh Infrastruktur Terhadap Kemiskinan: Analisis Data Panel 34 Provinsi Di Indonesia,†Jurnal Informatika Ekonomi Bisnis, Pp. 54–60, Mar. 2023, Doi: 10.37034/Infeb.V5i1.206.

N. Salsabila, N. Muna, V. H. Pradana, And W. F. Nurcahya, “Analisis Efektivitas Bantuan Sosial (Bansos) Dalam Mengatasi Kemiskinan Di Indonesia,†2024. [Online]. Available: Https://Economics.Pubmedia.Id/Index.Php/Jmsd

M. A. Amrustian, W. Widayat, And A. M. Wirawan, “Analisis Sentimen Evaluasi Terhadap Pengajaran Dosen Di Perguruan Tinggi Menggunakan Metode Lstm,†Jurnal Media Informatika Budidarma, Vol. 6, No. 1, P. 535, Jan. 2022, Doi: 10.30865/Mib.V6i1.3527.

L. Moh Arsal Fadila And N. Arsyta Putri, “Analisis Perkembangan Ketahanan Pangan Di Indonesia : Pendekatan Menggunakan Big Data Dan Data Mining (Analysis Of Food Security Development In Indonesia : A Big Data And Data Mining Approach).â€, Vol. 2023 No 1 2023 , Doi:10.34123/Semnasoffstat.V2023i1.1890.

Nazifatul Fadhilah, Arnita , “Prosiding Seminar Nasional Jurusan Matematika 2023â€, Prosidingseminar Nasional Jurusan Matematika 2023 [Online]. Available: Https://Digilib.Unimed.Ac.Id/Id/Eprint/58599.

Samuel Erlangga, Indwiarti, Annisa Aditsania “Prediksi Harga Mata Uang Kripto Menggunakan Lstm Dan Mlr.â€, E-Proceeding Of Engineering, Vol. 10 No. 3 2023.

P. Nusaiba Yulisa, M. Al Haris, And P. Rismawati Arum, “Peramalan Nilai Ekspor Migas Di Indonesia Dengan Model Long Short Term Memory (Lstm) Dan Gated Recurrent Unit (Gru),†J Statistika Nol.16 No.1 2023, Doi.: 10.36456/Jstat.Vol16.No1.A6121.

Dunrui, D.T. Socio-economic of Indonesia in 2021, Kaggle. Available at: https://www.kaggle.com/datasets/dannytheodore/socio-economic-of-indonesia-in 2021?select=2021socio_economic _indonesia.csv, Accessed: 12 June 2024, 2023.

Y. Hu, L. Yan, T. Hang, And J. Feng, “Stream-Flow Forecasting Of Small Rivers Based On Lstm,†Arxiv Jan. 2020, [Online]. Available: Http://Arxiv.Org/Abs/2001.05681

C. Avci, B. Tekinerdogan, And C. Catal, “Analyzing The Performance Of Long Short-Term Memory Architectures For Malware Detection Models,†Concurr Comput, Vol. 35, No. 6, P. 1, Mar. 2023, Doi: 10.1002/Cpe.7581.

M. Bukhari Et Al., “A Smart Heart Disease Diagnostic System Using Deep Vanilla Lstm,†Computers, Materials And Continua, Vol. 77, No. 1, Pp. 1251–1279, 2023, Doi: 10.32604/Cmc.2023.040329.

X. Du, M. Sabbaqi, And M. Yang, “Short-Term Earthquake Prediction Via Recurrent Neural Network Models Comparison Among Vanilla Rnn, Lstm And Bi-Lstm,†Delft University of Technology, Bachelor Seminar of Computer Science and Engineering Jan 2022.

G. Van Houdt, C. Mosquera, And G. Nápoles, “A Review On The Long Short-Term Memory Model,†Artif Intell Rev, Vol. 53, No. 8, Pp. 5929–5955, Dec. 2020, Doi: 10.1007/S10462-020-09838-1.

M. Ma, C. Liu, R. Wei, B. Liang, And J. Dai, “Predicting Machine’s Performance Record Using The Stacked Long Short-Term Memory (Lstm) Neural Networks,†J Appl Clin Med Phys, Vol. 23, No. 3, Mar. 2022, Doi: 10.1002/Acm2.13558.

N. Elizabeth Michael, M. Mishra, S. Hasan, And A. Al-Durra, “Short-Term Solar Power Predicting Model Based On Multi-Step Cnn Stacked Lstm Technique,†Energies (Basel), Vol. 15, No. 6, Mar. 2022, Doi: 10.3390/En15062150.

A. Syahruluddin Yusuf And A. Firman Ihsan, “Jipi (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika) Journal Homepage: Https://Jurnal.Stkippgritulungagung.Ac.Id/Index.Php/Jipi Comparison Of Knn And Lstm On The Prediction Of The Operational Conditions Of Natural Gas Pipeline Transmission Networks,†Vol. 9, No. 2, Pp. 476–486, 2024, Doi: 10.29100/Jipi.V9i2.4528.

X. Huang, C. Zhang, Q. Li, Y. Tai, B. Gao, And J. Shi, “A Comparison Of Hour-Ahead Solar Irradiance Forecasting Models Based On Lstm Network,†Math Probl Eng, Vol. 2020, 2020, Doi: 10.1155/2020/4251517.

M. Elsaraiti And A. Merabet, “A Comparative Analysis Of The Arima And Lstm Predictive Models And Their Effectiveness For Predicting Wind Speed,†Energies (Basel), Vol. 14, No. 20, Oct. 2021, Doi: 10.3390/En14206782.

M. Yurtsever, “Gold Price Forecasting Using Lstm, Bi-Lstm And Gru,†European Journal Of Science And Technology, Dec. 2021, Doi: 10.31590/Ejosat.959405.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.