Sentiment Analysis of Lazada Product Reviews using Convolutional Neural Network and Naïve Bayes Models

Ikhsan Maulana Siddiq, Kemas Muslim Lhaksmana

Abstract


Lazada is one of the biggest marketplaces in Southeast Asia. One of the main features of Lazada is product reviews, any customer who has purchased and used a product from Lazada can provide reviews and ratings on the ones that have been purchased. Sentiment analysis on product reviews can help improve product and service quality, increase customer satisfaction, and improve purchasing decisions. Doing sentiment analysis of product reviews aims to help customers how to feel about the product, reading and analyzing each review manually is very not efficient. Sentiment analysis can automate handling large volumes of data quickly and accurately. In this research, using Lazada product review dataset to analyze sentiment by comparing Convolutional Neural Network (CNN) and Naive Bayes. CNN and Naive Bayes are two common methods used in text analysis and a comparison of their performance can provide the effectiveness of each in analyzing product sentiment. In this study, the authors propose to analyze the sentiment of product reviews using deep learning algorithm with CNN method. The results of this study explain that the CNN method can provide satisfactory results than Naive Bayes. Based on the overall evaluation, CNN gets an accuracy value of 99.31%, precision of 99.31%, recall 99.31%, and f1-score of 99.31%, while Naive Bayes gets the highest accuracy rate of 96.16%, precision 96.34%, recall 96.16%, and f1-score 96.16%.

Keywords


Sentiment Analysis; Lazada; CNN; Naive Bayes; Accuracy

Full Text:

PDF

References


A. L. Zahra, A. I. Ananda, and A. S. Asy’ari, “Peran E-Commerce sebagai Solusi di Masa Pandemi Covid-19,†Pros. Semin. Nas. Teknol. dan Sist. Inf., no. November, pp. 156–161, 2021.

H. Hasanudin, “Dampak Pandemi Covid-19 Pada Penjualan E-Commerce Di Media Sosial,†Ekon. Bisnis, vol. 20, no. 1, pp. 41–50, 2021.

D. Hernikawati, “Analisis Dampak Pandemi COVID-19 terhadap Jumlah Kunjungan pada Situs E-Commerce di Indonesia Menggunakan Uji T Berpasangan,†J. Stud. Komun. dan Media, vol. 25, no. 2, p. 191, 2021.

U. D. Putri, “Dampak Harga, Ulasan Produk, Kemudahan dan Keamanan Terhadap Loyalitas Konsumen Belanja Online di Lazada,†J. Manaj. Modal Insa. Dan Bisnis, vol. 2, no. 2, pp. 156–163, 2021.

B. Z. Ramadhan, R. I. Adam, and I. Maulana, “Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes,†J. Appl. Informatics Comput., vol. 6, no. 2, pp. 220–225, 2022.

Y. Sidik, “ANALISIS PROMOSI SOSIAL MEDIA & REVIEW PRODUK UNTUK PENGAMBILAN KEPUTUSAN PEMBELIAN PADA MARKETPLACE LAZADA (Studi Kasus Mahasiswa Universitas Pakuan),†2022.

A. Nababan, A. Lumenta, Y. Rindengan, F. Pontoh, and Y. Akay, “Analisis Sentimen Twitter Pasca Pengumuman Hasil Pilpres 2019 Menggunakan Metode Lexicon Analysis,†J. Tek. Inform., vol. 15, no. 1, pp. 33–44, 2020.

S. H. Badjrie, O. N. Pratiwi, and H. D. Anggana, “Analisis Sentimen Review Customer Terhadap Produk Indihome Dan First Media Menggunakan Algoritma Convolutional Neural Network Review Analysis Sentiment Customer Product Indihome And First Media Using Convolutional Neural Network,†eProceedings …, vol. 8, no. 5, pp. 9049–9061, 2021.

P. W. Hardjita, “PENERAPAN ANALISIS SENTIMEN PADA PENGGUNA TWITTER MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK DAN NAIVE BAYES (STUDI KASUS : KARTU PRAKERJA),†2021.

M. N. Humam, “Perbandingan Kinerja CNN dan Naïve Bayes pada Analisis Sentimen Performa Manchester United di Twitter,†J. Inf. Eng. Educ. Technol., vol. 7, no. 2, pp. 83–91, 2023.

Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 820–826, Aug. 2021.

Stephenie, B. Warsito, and A. Prahutama, “Sentiment Analysis on Tokopedia Product Online Reviews Using Random Forest Method,†E3S Web Conf., vol. 202, pp. 1–10, 2020.

F. Novitasari and M. D. Purbolaksono, “Analysis Sentiment Aspect Level on Beauty Product Reviews Using Chi-Square and Naïve Bayes,†J. Data …, no. January, pp. 18–30, 2021.

E. Laia and M. Yamin, “Penerapan Algoritma Naïve Bayes dalam Menganalisis Sentimen pada Review Pengguna E-Commerce,†Media Online), vol. 4, no. 1, pp. 305–316, 2023.

B. Hakim, “Analisa Sentimen Data Text Preprocessing Pada Data Mining Dengan Menggunakan Machine Learning,†JBASE - J. Bus. Audit Inf. Syst., vol. 4, no. 2, pp. 16–22, 2021.

N. P. A. Widiari, I. M. A. D. Suarjaya, and D. P. Githa, “Teknik Pengolahan Data Cleaning,†J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 8, no. 2, p. 137, 2020.

P. P. O. Mahawardana, I. A. P. F. Imawati, and I. W. Dika, “Analisis Sentimen Berdasarkan Opini dari Media Sosial Twitter terhadap ‘Figure Pemimpin’ Menggunakan Python,†J. Manaj. dan Teknol. Inf., vol. 12, no. 2, pp. 50–56, 2022.

G. Kamil and E. B. Setiawan, “Aspect-Level Sentiment Analysis on Social Media Using Gated Recurrent Unit (GRU),†Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 1837–1844, 2023.

X. Liu et al., “Developing Multi-Labelled Corpus of Twitter Short Texts: A Semi-Automatic Method,†Systems, vol. 11, no. 8, 2023.

R. Rinandyaswara, Y. A. Sari, and M. T. Furqon, “Pembentukan Daftar Stopword Menggunakan Term Based Random Sampling Pada Analisis Sentimen Dengan Metode Naïve Bayes (Studi Kasus: Kuliah Daring Di Masa Pandemi),†J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 4, p. 717, 2022.

O. I. Gifari, M. Adha, F. Freddy, and F. F. S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,†J. Inf. Technol., vol. 2, no. 1, pp. 36–40, 2022.

A. Masruriyah, H. Novita, C. Sukmawati, A. Ramadhan, S. Arif, and B. Dermawan, “Pengukuran Kinerja Model Klasifikasi dengan Data Oversampling pada Algoritma Supervised Learning untuk Penyakit Jantung,†Comput. Sci., vol. 4, no. 1, pp. 62–70, 2024.

R. Liswara, “Identifikasi akun bot pada media sosial twitter menggunakan metode extreme gradient boosting dan algoritma cuckoo search sebagai seleksi fitur,†UIN Syarif Hidayatullah Jakarta Fak. Sains dan Teknol., 2022.

M. F. Herlambang, A. N. Hermana, and K. R. Putra, “Pengenalan Karakter Huruf Braille dengan Metode Convolutional Neural Network,†Syst. Inf. Syst. Informatics J., vol. 6, no. 2, pp. 20–26, 2021.

Bustomi, “Penerapan Algoritma Naive Bayes Untuk Mengklasifikasi Data Nasabah Asuransi pada BPR Pantura,†2019.




DOI: https://doi.org/10.30865/mib.v8i3.7834

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.