Implementasi Ensemble Deep Learning Untuk Analisis Sentimen Terhadap Genre Game Mobile

Authors

  • Marcelinus Fajar Cahyadi Universitas Pradita, Tangerang
  • Theresia Herlina Rochadiani Universitas Pradita, Tangerang

DOI:

https://doi.org/10.30865/mib.v8i3.7832

Keywords:

BERT, CNN-GRU, CNN-LSTM, Deep Learning, Ensemble Learning, Mobile Game Genre, Sentiment Analysis

Abstract

The rapid growth of the online gaming industry in Indonesia has prompted developers to address various challenges in creating successful mobile games. This study aims to evaluate the effectiveness of ensemble learning techniques, particularly soft voting, in enhancing sentiment analysis accuracy across 17 genres of mobile games. Additionally, it identifies the most effective deep learning model for sentiment classification. The research compares the performance of CNN-LSTM, BERT, and CNN-GRU models, as well as an ensemble of these models. Review data was collected from the Google Play Store, then labeled and cleaned to improve data quality, categorized into positive, neutral, and negative sentiments. Data preprocessing techniques included cleaning, case folding, tokenization, normalization, stopword removal, and stemming. Word embedding techniques used were Word2vec for CNN-LSTM and CNN-GRU models, and IndoBERT for BERT model. Ensemble learning combined predictions from these models, significantly improving classification accuracy. Results indicate IndoBERT achieved an accuracy of 89%, while CNN-GRU and CNN-LSTM showed accuracies around 84-85%. The ensemble approach using soft voting successfully increased overall accuracy to 90% by combining predictions from all three models. The study concludes that ensemble learning effectively combines individual model strengths to enhance sentiment classification accuracy. Furthermore, user preference visualization for game genres revealed high popularity for "Strategy", "Word", and "Trivia" genres, while "Sports" genres were less favored. This research is expected to contribute to game developers in determining which genres to develop to enhance success chances and user satisfaction.

References

J. O. Rahman and M. Nursalim, “Studi kepustakaan faktor-faktor penyebab kecanduan game online ‘mobile legends’ pada siswa sekolah menengah atas,†Jurnal BK Unesa, vol. 12, no. 1, pp. 93–100, 2021.

S. Nur and J. S. Djafar, Dampak Penggunaan Aplikasi Berbasis Online Food Delivery Atas Tingkat Pendapatan Usaha Kuliner di Kota Makassar. TOHAR MEDIA, 2023.

R. Dewi, T. Andari, M. Rasyid, and R. A.P., “Ekstraksi Faktor Kompleksitas Game Menggunakan Metode Function Points,†Jurnal Teknologi dan Sistem Informasi, vol. 4, pp. 115–122, Dec. 2018, doi: 10.25077/TEKNOSI.v4i3.2018.122.

Rona Nisa Sofia Amriza and Didi Supriyadi, “Komparasi Metode Machine Learning dan Deep Learning untuk Deteksi Emosi pada Text di Sosial Media,†JUPITER: Jurnal Penelitian Ilmu dan Teknologi Komputer, vol. 13, no. 2, pp. 130–139, Oct. 2021, doi: 10.5281/3603.jupiter.2021.10.

I. Priyadarshini and C. Cotton, “A novel LSTM–CNN–grid search-based deep neural network for sentiment analysis,†J Supercomput, vol. 77, no. 12, pp. 13911–13932, 2021, doi: 10.1007/s11227-021-03838-w.

N. Husin, “Komparasi Algoritma Random Forest, Naïve Bayes, dan Bert Untuk Multi-Class Classification Pada Artikel Cable News Network (CNN),†Jurnal Esensi Infokom : Jurnal Esensi Sistem Informasi dan Sistem Komputer, vol. 7, no. 1, May 2023, doi: 10.55886/infokom.v7i1.608.

A. Adam and E. Setiawan, “Social Media Sentiment Analysis using Convolutional Neural Network (CNN) dan Gated Recurrent Unit (GRU),†pp. 119–131, Mar. 2023, doi: 10.26555/jiteki.v9i1.25813.

Y. A. Pratama, F. Budiman, S. Winarno, and D. Kurniawan, “JURNAL MEDIA INFORMATIKA BUDIDARMA Analisis Optimasi Algoritma Decision Tree, Logistic Regression dan SVM Menggunakan Soft Voting,†vol. 7, pp. 1908–1919, 2023, doi: 10.30865/mib.v7i4.6856.

R. Mas, R. W. Panca, K. Atmaja1, and W. Yustanti2, “Analisis Sentimen Customer Review Aplikasi Ruang Guru dengan Metode BERT (Bidirectional Encoder Representations from Transformers),†JEISBI, vol. 02, p. 2021, 2021.

A. Nurian and B. Nurina Sari, “ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI GOOGLE PLAY MENGGUNAKAN NAÃVE BAYES,†Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3, pp. 2830–7062, 2023, doi: 10.23960/jitet.v11i3%20s1.3348.

K. I. Ruslim, P. P. Adikara, and I. Indriati, “Analisis Sentimen Pada Ulasan Aplikasi Mobile Banking Menggunakan Metode Support Vector Machine dan Lexicon Based Features,†Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 7, pp. 6694–6702, Aug. 2019, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5792

V. Fitri, R. Andreswari, and M. Azani Hasibuan, “Sentiment Analysis of Social Media Twitter with Case of Anti-LGBT Campaign in Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm,†Procedia Comput Sci, vol. 161, pp. 765–772, Jun. 2019, doi: 10.1016/j.procs.2019.11.181.

D. Safryda Putri and T. Ridwan, “ANALISIS SENTIMEN ULASAN APLIKASI POSPAY DENGAN ALGORITMA SUPPORT VECTOR MACHINE,†JURNAL ILMIAH INFORMATIKA, vol. 11, no. 01, pp. 32–40, Mar. 2023, doi: 10.33884/jif.v11i01.6611.

D. Agustina, S. Subanti, and E. Zukhronah, “Implementasi Text Mining Pada Analisis Sentimen Pengguna Twitter Terhadap Marketplace di Indonesia Menggunakan Algoritma Support Vector Machine,†Indonesian Journal of Applied Statistics, vol. 3, p. 109, Jan. 2020, doi: 10.13057/ijas.v3i2.44337.

C. Villavicencio, J. J. Macrohon, X. A. Inbaraj, J.-H. Jeng, and J.-G. Hsieh, “Twitter Sentiment Analysis towards COVID-19 Vaccines in the Philippines Using Naïve Bayes,†Information, vol. 12, no. 5, 2021, doi: 10.3390/info12050204.

F. Indriyani, A. Fauzi, and S. Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,†TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, vol. 10, pp. 176–184, Jul. 2023, doi: 10.37373/tekno.v10i2.419.

U. Kulsum, M. Jajuli, and N. Sulistiyowati, “Analisis Sentimen Aplikasi WETV di Google Play Store Menggunakan Algoritma Support Vector Machine,†Journal of Applied Informatics and Computing, vol. 6, pp. 205–212, Dec. 2022, doi: 10.30871/jaic.v6i2.4802.

R. S. Amardita, A. Adiwijaya, and M. D. Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,†JURIKOM (Jurnal Riset Komputer), vol. 9, no. 1, p. 62, Feb. 2022, doi: 10.30865/jurikom.v9i1.3793.

A. Ulfah, M. Anam, N. Munti, S. Yaakub, and M. Firdaus, “Sentiment Analysis of the Convict Assimilation Program on Handling Covid-19,†JUITA : Jurnal Informatika, vol. 10, p. 209, Nov. 2022, doi: 10.30595/juita.v10i2.12308.

H.-T. Duong and T.-A. Nguyen-Thi, “A review: preprocessing techniques and data augmentation for sentiment analysis,†Comput Soc Netw, vol. 8, Jan. 2021, doi: 10.1186/s40649-020-00080-x.

R. Ramadhan, M. Afdal, I. Permana, and M. Jazman, “Analisis Sentimen pada Ulasan Aplikasi Maxim di Google Play Store dengan K-Nearest Neighbor,†Jurnal Riset Komputer), vol. 10, no. 3, pp. 2407–389, 2023, doi: 10.30865/jurikom.v10i3.6396.

R. Rahmiati, D. Irfan, A. Agustin, and S. Hediyati, “APLIKASI PENGUKUR TINGKAT SENTIMEN PELANGGAN BERDASARKAN KOMPLAIN PELANGGAN PLN MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR,†INOVTEK Polbeng - Seri Informatika, vol. 5, p. 332, Nov. 2020, doi: 10.35314/isi.v5i2.1467.

D. Rifaldi, A. Fadlil, and Herman, “Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet ‘Mental Health,’†Decode: Jurnal Pendidikan Teknologi Informasi, vol. 3, pp. 161–171, Apr. 2023, doi: 10.51454/decode.v3i2.131.

H. Irmanda, I. Isnainiyah, S. Afrizal, and N. Falih, “Implementasi Metode Naïve Bayes untuk Analisis Sentimen Warga Jakarta Terhadap Kehadiran Mass Rapid Transit,†Informatik : Jurnal Ilmu Komputer, vol. 15, pp. 157–166, Dec. 2019, doi: 10.52958/iftk.v15i3.1454.

F. Nufairi, N. Pratiwi, and F. Herlando, “ANALISIS SENTIMEN PADA ULASAN APLIKASI THREADS DI GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,†JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 1, pp. 339–348, Feb. 2024, doi: 10.29100/jipi.v9i1.4929.

R. Maulana, A. Voutama, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC,†Jurnal Teknologi Terpadu, vol. 9, pp. 42–48, Jul. 2023, doi: 10.54914/jtt.v9i1.609.

E. Suryati, A. Ari Aldino, N. Penulis Korespondensi, and E. Suryati Submitted, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),†vol. 4, no. 1, pp. 96–106, 2023, doi: 10.33365/jtsi.v4i1.2445.

M. Ridwan and A. Muzakir, “Model Klasifikasi Ujaran Kebencian pada Data Twitter dengan Menggunakan CNN-LSTM,†Teknomatika, vol. 12, no. 02, Sep. 2022, [Online]. Available: https://ojs.palcomtech.ac.id/index.php/teknomatika/article/view/604

B. Anbalagan, “Embedded Bi-directional GRU and LSTMLearning Models to Predict Disasterson Twitter Data,†Procedia Comput Sci, vol. 165, pp. 511–516, Aug. 2019.

L. Zeng, W. Ren, and L. Shan, “Attention-Based Bidirectional Gated Recurrent Unit Neural Networks for Well Logs Prediction and Lithology Identification,†Neurocomputing, vol. 414, Jul. 2020, doi: 10.1016/j.neucom.2020.07.026.

H. Lynn, S. Pan, and P. Kim, “A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on Recurrent Neural Networks,†IEEE Access, vol. PP, p. 1, Sep. 2019, doi: 10.1109/ACCESS.2019.2939947.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,†in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds., Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.

B. Wilie et al., “IndoNLU: Benchmark and resources for evaluating Indonesian natural language understanding,†arXiv preprint arXiv:2009.05387, 2020.

E. P. A. Akhmad, “Analisis Sentimen Ulasan Aplikasi DLU Ferry Pada Google Play Store Menggunakan Bidirectional Encoder Representations from Transformers,†JURNAL APLIKASI PELAYARAN DAN KEPELABUHANAN, vol. 13, no. 2, pp. 104–112, Mar. 2023, doi: 10.30649/japk.v13i2.94.

M. Murad, S. Sukmawaty, A. Ansar, R. Sabani, and S. Hidayat, “Sistem Pendeteksi Kerusakan Buah Mangga Menggunakan Sensor Gas Dengan Metode DCS - LCA,†JTIM : Jurnal Teknologi Informasi dan Multimedia, vol. 3, no. 4, Dec. 2021, doi: 10.35746/jtim.v3i4.169.

A. Mahabub, “A robust technique of fake news detection using Ensemble Voting Classifier and comparison with other classifiers,†SN Appl Sci, vol. 2, no. 4, p. 525, 2020, doi: 10.1007/s42452-020-2326-y.

M. A. R. Reynaldhi and Y. Sibaroni, “Analisis Sentimen Review Film pada Twitter menggunakan Metode Klasifikasi Hybrid SVM, Naïve Bayes, dan Decision Tree,†eProceedings of Engineering, vol. 8, no. 5, 2021.

A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government Pada Google Play Menggunakan Algoritma Naïve Bayes,†vol. 9, no. 2, pp. 785–795, 2022.

V. Fitriyana, L. Hakim, D. Novitasari, and A. Asyhar, “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,†Jurnal Buana Informatika, vol. 14, pp. 40–49, Apr. 2023, doi: 10.24002/jbi.v14i01.6909.

J. Pendidikan and D. Konseling, “Analisis Sentimen terhadap Perpanjangan Masa Jabatan Presiden Indonesia Menggunakan Algoritma Naïve Bayes Universitas Pahlawan Tuanku Tambusai,†vol. 4, pp. 4625–4635, 2022.

S. Sutresno, “Analisis Sentimen Masyarakat Indonesia Terhadap Dampak Penurunan Global Sebagai Akibat Resesi di Twitter,†Building of Informatics, Technology and Science (BITS), vol. 4, Mar. 2023, doi: 10.47065/bits.v4i4.3149.

Firmansyah, D. P. Rini, and Sukemi, “Klasifikasi Data Penderita Skizofrenia Menggunakan CNN-LSTM dan Cnn-Gru pada Data Sinyal EEG 2D,†Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:267078470

Downloads

Published

2024-07-26

Issue

Section

Articles