Optimizing Sentiment Analysis of Working Hours Impact on Generation Z’s Mental Health Using Backpropagation
Abstract
The topic of working hours' impact, Generation Z, and mental health are discussions that are often found on social media such as X (used to be Twitter). The sentiment analysis addressing these topics is needed to find out people’s opinions regarding these topics. It could also be helpful as a consideration for the decision-making process for related topics research. Therefore, this research aims to improve the accuracy of the model generated by the previous sentiment analysis research regarding the working hours’ impact on Gen Z’s mental health. The contribution of this research is by building a robust Backpropagation Neural Network model and utilizing SMOTETomek to achieve higher accuracy. This research compared two oversampling techniques for data balancing: SMOTE and SMOTETomek. The result shows that this research has successfully outperformed the baseline research with the best accuracy of 91% using SVM by generating the best accuracy of 93.01% with SMOTETomek. For comparison, SMOTETomek has outperformed SMOTE by generating the best accuracy of 93.01%, while the best accuracy generated with SMOTE is 92.26%. It indicates that in the case of Indonesian text sentiment analysis of this research, SMOTETomek has a better effect compared to SMOTE.
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 147 timesPDF - 84 times
References
S. Y. Park, J. Huberty, J. Yourell, K. L. McAlister, and C. C. Beatty, ‘A Spiritual Self-Care Mobile App (Skylight) for Mental Health, Sleep, and Spiritual Well-Being Among Generation Z and Young Millennials: Cross-Sectional Survey’, JMIR Form Res, vol. 7, no. 1, Jan. 2023, doi: 10.2196/50239.
R. M. Bakar and A. P. M. Usmar, ‘Growth Mindset dalam Meningkatkan Mental Health bagi Generasi Zoomer’, IPTEK: Jurnal Hasil Pengabdian Masyarakat, vol. 2, no. 2, pp. 122–128, 2022.
S. Bulut and D. Maraba, ‘Generation Z and its Perception of Work through Habits, Motivations, Expectations Preferences, and Work Ethics’, Psychology and Psychotherapy: Research Study, vol. 4, no. 4, 2021, doi: 10.31031/PPRS.2021.04.000593.
E. C. Waworuntu, S. J. R. Kainde, and D. W. Mandagi, ‘Work-Life Balance, Job Satisfaction and Performance Among Millennial and Gen Z Employees: A Systematic Review’, Society, vol. 10, no. 2, pp. 384–398, 2022.
A. S. Rivera, M. Akanbi, L. C. O’Dwyer, and M. McHugh, ‘Shift work and long work hours and their association with chronic health conditions: A systematic review of systematic reviews with meta-analyses’, PLoS One, vol. 15, no. 4, p. e0231037, Apr. 2020, doi: 10.1371/journal.pone.0231037.
E. Choi et al., ‘Long working hours and depressive symptoms: moderation by gender, income, and job status’, J Affect Disord, vol. 286, pp. 99–107, May 2021, doi: 10.1016/j.jad.2021.03.001.
H.-E. Lee, I. Kim, H.-R. Kim, and I. Kawachi, ‘Association of long working hours with accidents and suicide mortality in Korea’, Scand J Work Environ Health, vol. 46, no. 5, pp. 480–487, Sep. 2020, doi: 10.5271/sjweh.3890.
X. Ma, ‘Impact of Long Working Hours on Mental Health: Evidence from China’, Int J Environ Res Public Health, vol. 20, no. 2, p. 1641, Jan. 2023, doi: 10.3390/ijerph20021641.
Y. Widarahhesty, ‘Otsukaresamadeshita!: A Critical Analysis of Japan’s Toxic Work Culture’, International Journal of East Asian Studies, vol. 9, no. 1, pp. 32–47, Dec. 2020, doi: 10.22452/IJEAS.vol9no1.3.
M. Wankhade, A. C. S. Rao, and C. Kulkarni, ‘A survey on sentiment analysis methods, applications, and challenges’, Artif Intell Rev, vol. 55, no. 7, pp. 5731–5780, Oct. 2022, doi: 10.1007/s10462-022-10144-1.
M. K. Sandryan, B. Rahayudi, and D. E. Ratnawati, ‘Analisis Sentimen Pada Media Sosial Twitter Terhadap Undang-Undang Cipta Kerja Menggunakan Algoritma Backpropagation dan Term Frequency-Inverse Document Frequency’, 2021. [Online]. Available: http://j-ptiik.ub.ac.id
F. A. Hizham and C. K. Murni, ‘Sentiment Analysis Based on Review of Puncak B29 Lumajang using Backpropagation Neural Network’, 2023, pp. 210–214. doi: 10.2991/978-94-6463-346-7_39.
L. D. Cahya, A. Luthfiarta, J. I. T. Krisna, S. Winarno, and A. Nugraha, ‘Improving Multi-label Classification Performance on Imbalanced Datasets Through SMOTE Technique and Data Augmentation Using IndoBERT Model’, Jurnal Nasional Teknologi dan Sistem Informasi, vol. 9, no. 3, pp. 290–298, Jan. 2024, doi: 10.25077/teknosi.v9i3.2023.290-298.
C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, ‘Analisis sentimen pada rating aplikasi Shopee menggunakan metode Decision Tree berbasis SMOTE’, AITI: Jurnal Teknologi Informasi, vol. 18, no. 2, pp. 173–184, Aug. 2021.
D. I. Sumantiawan, J. E. Suseno, and W. A. Syafei, ‘Sentiment Analysis of Customer Reviews Using Support Vector Machine and Smote-Tomek Links For Identify Customer Satisfaction’, J. Sistem Info. Bisnis, vol. 13, no. 1, pp. 1–9, Jun. 2023, doi: 10.21456/vol13iss1pp1-9.
M. Daffa, A. Fahreza, A. Luthfiarta, M. Rafid, M. Indrawan, and A. Nugraha, ‘Analisis Sentimen: Pengaruh Jam Kerja Terhadap Kesehatan Mental Generasi Z’, JOURNAL OF APPLIED COMPUTER SCIENCE AND TECHNOLOGY (JACOST), vol. 5, no. 1, pp. 2723–1453, 2024, doi: 10.52158/jacost.715.
A. I. Safitri and T. B. Sasongko, ‘SENTIMENT ANALYSIS OF CYBERBULLYING USING BIDIRECTIONAL LONG SHORT TERM MEMORY ALGORITHM ON TWITTER’, Jurnal Teknik Informatika (JUTIF), vol. 5, no. 2, pp. 615–620, 2024, doi: 10.52436/1.jutif.2024.5.2.1922.
E. Suryati, A. Ari Aldino, N. Penulis Korespondensi, and E. Suryati Submitted, ‘Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM)’, vol. 4, no. 1, pp. 96–106, 2023, doi: 10.33365/jtsi.v4i1.2445.
A. Ilham and W. Pramusinto, ‘ANALISIS SENTIMEN MASYARAKAT TERHADAP KESEHATAN MENTAL PADA TWITTER MENGGUNAKAN ALGORITME K-NEAREST NEIGHBOR’, in Prosiding Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), 2023, pp. 539–547.
K. Kusumaningtyas et al., ‘Tweet Analysis of Mental Illness Using K-Means Clustering and Support Vector Machine’, Jurnal Informatika dan Teknologi Informasi, vol. 20, no. 3, pp. 295–308, 2023, doi: 10.31515/telematika.v20i3.9820.
A. Dwiki, A. Putra, and S. Juanita, ‘Analisis Sentimen Pada Ulasan Pengguna Aplikasi Bibit Dan Bareksa Dengan Algoritma KNN’, vol. 8, no. 2, 2021, [Online]. Available: http://jurnal.mdp.ac.id
A. Primadhani Tirtopangarsa and W. Maharani, ‘Sentiment Analysis of Depression Detection on Twitter Social Media Users Using the K-Nearest Neighbor Method’, in SEMNASIF 2021, 2021, pp. 247–258.
H. A. Almuzaini and A. M. Azmi, ‘Impact of Stemming and Word Embedding on Deep Learning-Based Arabic Text Categorization’, IEEE Access, vol. 8, pp. 127913–127928, 2020, doi: 10.1109/ACCESS.2020.3009217.
S. B. S, D. Khyani, N. N. M, and D. B. M, ‘An Interpretation of Lemmatization and Stemming in Natural Language Processing’, Journal of University of Shanghai for Science and Technology, vol. 22, no. 10, pp. 350–357, 2020, [Online]. Available: https://www.researchgate.net/publication/348306833
D. Mustikasari, I. Widaningrum, R. Arifin, W. Henggal, and E. Putri, ‘Comparison of Effectiveness of Stemming Algorithms in Indonesian Documents’, in Proceedings of the 2nd Borobudur International Symposium on Science and Technology (BIS-STE 2020), 2021, pp. 154–158. [Online]. Available: http://tiny.cc/rootwords.
D. Musfiroh, U. Khaira, P. E. P. Utomo, and T. Suratno, ‘Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon’, MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 1, no. 1, pp. 24–33, 2021.
M. Chiny, M. Chihab, Y. Chihab, and O. Bencharef, ‘LSTM, VADER and TF-IDF based Hybrid Sentiment Analysis Model’, IJACSA) International Journal of Advanced Computer Science and Applications, vol. 12, no. 7, pp. 265–275, 2021, [Online]. Available: www.ijacsa.thesai.org
E. B. Fatima, B. Omar, E. M. Abdelmajid, F. Rustam, A. Mehmood, and G. S. Choi, ‘Minimizing the Overlapping Degree to Improve Class-Imbalanced Learning Under Sparse Feature Selection: Application to Fraud Detection’, IEEE Access, vol. 9, pp. 28101–28110, 2021, doi: 10.1109/ACCESS.2021.3056285.
R. Obiedat et al., ‘Sentiment Analysis of Customers’ Reviews Using a Hybrid Evolutionary SVM-Based Approach in an Imbalanced Data Distribution’, IEEE Access, vol. 10, pp. 22260–22273, 2022, doi: 10.1109/ACCESS.2022.3149482.
D. I. Sumantiawan, J. E. Suseno, and W. A. Syafei, ‘Sentiment Analysis of Customer Reviews Using Support Vector Machine and Smote-Tomek Links For Identify Customer Satisfaction’, J. Sistem Info. Bisnis, vol. 13, no. 1, pp. 1–9, Jun. 2023, doi: 10.21456/vol13iss1pp1-9.
S. Kassaymeh, M. Al-Laham, M. A. Al-Betar, M. Alweshah, S. Abdullah, and S. N. Makhadmeh, ‘Backpropagation Neural Network optimization and software defect estimation modelling using a hybrid Salp Swarm optimizer-based Simulated Annealing Algorithm’, Knowl Based Syst, vol. 244, p. 108511, May 2022, doi: 10.1016/j.knosys.2022.108511.
J. Zhang and S. Qu, ‘Optimization of Backpropagation Neural Network under the Adaptive Genetic Algorithm’, Complexity, vol. 2021, pp. 1–9, Jul. 2021, doi: 10.1155/2021/1718234.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA
This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.