Perbandingan Algoritma Naïve Bayes dengan K-Nearest Neighbor Untuk Analisis Sentimen Aplikasi InDrive di Playstore

Muhammad Irfan, Erizal Erizal

Abstract


Transportation is already part of the main needs in moving from one place to another. One of them is land transportation which is the most widely used in daily needs. There are various technology companies that are competing to create online-based transportation, one of which is inDrive. Of the several online transportation services, inDrive has a different system that can negotiate or bargain for transportation rates directly. it is interesting to do an analysis to find out whether the system is worth maintaining or it will get constructive criticism so that in the future it can improve the quality of the inDrive application. Review or comment data taken from google play through google colab as much as 1200 data and processed using RapidMiner. Testing is carried out in two stages, namely training data and testing data, training data that is greater than testing data will affect the accuracy of a method. The purpose of this research is to see various positive and negative reviews in the inDrive application and make a comparison between the Naïve Bayes method and K-Nearest Neighbor with the results of 97.50% accuracy, 92.71% precision and 100% recall for Naïve Bayes. While accuracy 83.21%, precision 85% and recall 57.30% for KNN, from these results it can be concluded that the Naïve Bayes method has superior accuracy in making classifications.

Keywords


Sentiment Analysis; Google Play; InDrive; Naïve Bayes; K-Nearest Neighbor

Full Text:

PDF

References


C. Matulessy and A. Purnama, “ANALISIS SENTIMEN TERHADAP REVIEW PENGGUNA INDRIVE DI GOOGLE PLAYSTORE MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,†J. Darma Agung, Vol 31, No 1, 2023.

M. Jonathan Wijaya and F. Jaolis, “Pengaruh Perceived Usefulness Dan Ease of Use Terhadap Usage Intention Aplikasi Indrive,†J. Brand. Digit. Mark., vol. 10, No. 1, 2023, [Online]. Available: http://petra.id/SurveyInDrive

Muhammad Rifan Mutaqin, Mochamad Malik Akbar Rohandi, and Septiana Ayu Estri Mahani, “Pengaruh Harga dan Kualitas Pelayanan Terhadap Keputusan Pembelian Transportasi Online Indrive di Bandung,†J. Ris. Manaj. dan Bisnis, pp. 69–78, 2023, doi: 10.29313/jrmb.v3i2.2824.

R. A. Sahulata, E. R. Tampubolon, and G. T. Sela, “Analisis UX Dan Usability Pada Aplikasi Indrive Menggunakan Metode Heuristic Evaluation,†Pros. CORISINDO, 2023.

M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,†UNNES J. Math., vol. 10, no. 2, pp. 22–27, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm

R. Sistem, S. A. Saputra, D. Rosiyadi, W. Gata, and S. M. Husain, “Analisis Sentimen E-Wallet Pada Google Play Menggunakan Algoritma,†vol. 1, no. 10, pp. 3–8, 2021.

B. Liu, “Sentiment analysis and subjectivity,†Handb. Nat. Lang. Process. Second Ed., no. November, pp. 627–666, 2010.

N. Saurina, “Analisis Sentimen Ulasan Pelanggan Batik Ecoprint Menggunakan Naïve Bayes Dan Knn Classifier,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 1532–1542, 2022, doi: 10.35957/jatisi.v9i2.1483.

F. Sodik and I. Kharisudin, “Analisis Sentimen dengan SVM , NAIVE BAYES dan KNN untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 pada Media Sosial Twitter,†Prisma, vol. 4, pp. 628–634, 2021.

A. S. Rizqiah and A. R. Kadafi, “Analisis Sentimen Pengguna Twitter Terhadap Vaksin Booster Menggunakan Metode Naïve Bayes Dan K-Nearst Neighbor,†J. Sains dan Teknol., vol. 4, no. 1, pp. 1–5, 2022, [Online]. Available: http://ejournal.sisfokomtek.org/index.php/saintek/article/view/335%0Ahttp://ejournal.sisfokomtek.org/index.php/saintek/article/download/335/314

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,†J. Tekno Kompak, vol. 15, no. 1, 2021.

J. Jtik, J. Teknologi, T. W. Putra, and A. Triayudi, “Analisis Sentimen Pembelajaran Daring menggunakan Metode Naïve Bayes , KNN , dan Decision Tree,†vol. 6, no. 1, 2022.

D. Pajri, Y. Umaidah, and T. N. Padilah, “K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia,†J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 242–253, 2020, doi: 10.28932/jutisi.v6i2.2658.

S. Lestari, M. Mupaat, and A. Erfina, “Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter,†JUSIFO (Jurnal Sist. Informasi), vol. 8, no. 1, pp. 13–22, 2022, doi: 10.19109/jusifo.v8i1.12116.

D. Ramadhan and E. B. Setiawan, “Analisis Sentimen Program Acara di SCTV pada Twitter Menggunakan Metode Naive Bayes dan Support Vector Machine,†… .Telkomuniversity.Ac.Id, vol. 6, no. 2, pp. 9736–9743, 2019, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/10708

A. Nurian, M. S. Ma’arif, I. N. Amalia, and C. Rozikin, “Analisis Sentimen Pengguna Aplikasi Shopee Pada Situs Google Play Menggunakan Naive Bayes Classifier,†J. Inform. dan Tek. Elektro Terap., vol. 12, no. 1, pp. 704–713, 2024, doi: 10.23960/jitet.v12i1.3631.

S. Rokhanah, A. Hermawan, and D. Avianto, “Pengaruh Principal Component Analysis Pada Naïve Bayes dan K-Nearest Neighbor Untuk Prediksi Dini Diabetes Melitus Menggunakan Rapidminer,†EVOLUSI J. Sains dan Manaj., vol. 11, no. 1, 2023, doi: 10.31294/evolusi.v11i1.14728.

G. Darmawan, S. Alam, and M. Imam Sulistyo, “ANALISIS SENTIMEN BERDASARKAN ULASAN PENGGUNA APLIKASI MYPERTAMINA PADA GOOGLE PLAYSTOREMENGGUNAKAN METODE NAÃVE BAYES,†J. Ilm. Tek. dan Ilmu Komput., vol. Vol. 2 No., no. Agustus, 2023.

I. Riadi, A. Fadlil, and P. Annisa, “Identifikasi Tulisan Tangan Huruf Katakana Jepang Dengan Metode Euclidean,†vol. 4, pp. 29–37, 2020.

A. Budiman, J. C. Young, and A. Suryadibrata, “Implementasi Algoritma Naïve Bayes untuk Klasifikasi Konten Twitter dengan Indikasi Depresi,†J. Inform. J. Pengemb. IT, vol. 6, no. 2, pp. 133–138, 2021, doi: 10.30591/jpit.v6i2.2419.

A. T. Mukti and F. N. Hasan, “Analisis Sentimen Warganet Terhadap Keberadaan Juru Parkir Liar Menggunakan Metode Naive Bayes Classifier,†J. Media Inform. Budidarma , vol. 8, no. 1, pp. 644–653, 2024, doi: 10.30865/mib.v8i1.6982.

D. Pramana, M. Afdal, M. Mustakim, and I. Permana, “Analisis Sentimen Terhadap Pemindahan Ibu Kota Negara Menggunakan Algoritma Naive Bayes Classifier dan K-Nearest Neightbors,†J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1306–1314, 2023, doi: 10.30865/mib.v7i3.6523.




DOI: https://doi.org/10.30865/mib.v8i3.7780

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.