Optimization of the Activation Function for Predicting Inflation Levels to Increase Accuracy Values

 (*)Agus Perdana Windarto Mail (STIKOM Tunas Bangsa, Pematangsiantar, Indonesia)
 Indra Riyana Rahadjeng (Universitas Bina Sarana Informatika, Jakarta, Indonesia)
 Muhammad Noor Hasan Siregar (Universitas Graha Nusantara, Padang Sidempuan, Indonesia)
 Muhammad Habib Yuhandri (Universitas Putra Indonesia YPTK, Padang, Indonesia)

(*) Corresponding Author

Submitted: June 7, 2024; Published: July 27, 2024

Abstract

This study aims to optimize the backpropagation algorithm by evaluating various activation functions to improve the accuracy of inflation rate predictions. Utilizing historical inflation data, neural network models were constructed and trained with Sigmoid, ReLU, and TanH activation functions. Evaluation using the Mean Squared Error (MSE) metric revealed that the ReLU function provided the most significant performance improvement. The findings indicate that the choice of activation function and neural network architecture significantly influences the model's ability to predict inflation rates. In the 5-7-1 architecture, the Logsig and ReLU activation functions demonstrated the best performance, with Logsig achieving the lowest MSE (0.00923089) and the highest accuracy (75%) on the test data. These results underscore the importance of selecting appropriate activation functions to enhance prediction accuracy, with ReLU outperforming the other functions in the context of the dataset used. This research concludes that optimizing activation functions in backpropagation is a crucial step in developing more accurate inflation prediction models, contributing significantly to neural network literature and practical economic applications.

Keywords


Backpropagation Algorithms; Artificial Neural Networks; Inflation Prediction; Economic Planning

Full Text:

PDF


Article Metrics

Abstract view : 142 times
PDF - 108 times

References

Y. Kurniawati, “Optimization Of Backpropagation Using Harmony Search For Gold Price Forecasting,” Pakistan J. Stat. Oper. Res., Vol. 18, No. 3, Pp. 589–599, 2022, Doi: 10.18187/Pjsor.V18i3.3915.

M. H. Amaly, R. H. Hirzi, And B. Basirun, “Perbandingan Metode Ann Backpropagation Dan Arma Untuk Peramalan Inflasi Di Indonesia,” … J. Probab. …, 2022.

M. Rastgou, Y. He, And Q. Jiang, “Implementation And Efficient Evaluation Of Backpropagation Network Training Algorithms In Parametric Simulations Of Soil Hydraulic Conductivity Curve,” J. Hydrol., 2024.

D. Ahmad, “Forecasting Inflation Rate In Padang City Using Backpropagation Method,” Rangkiang Math. J., 2022.

P. Alkhairi And B. H. Hayadi, “Penerapan Algoritma Backpropagation Untuk Mengenali Pola Tulisan Angka Dengan Fungsi Pelatihan Gradient Descent With Momentum Adaptive Lr,” Smartai Bul. Artif. Intell., Vol. 1, No. 3, Pp. 126–139, 2022.

P. Alkhairi And B. H. Hayadi, “Pemodelan Artificial Neural Network Peramalan Tingkat Kenaikan Jabatan Berdasarkan Kinerja Pegawai Menggunakan Backpropagation,” Smart Edu Bul. Educ., Vol. 1, No. 2, Pp. 73–84, 2022.

A. P. Windarto, T. Herawan, And P. Alkhairi, “Early Detection Of Breast Cancer Based On Patient Symptom Data Using Naive Bayes Algorithm On Genomic Data,” In Artificial Intelligence, Data Science And Applications, Y. Farhaoui, A. Hussain, T. Saba, H. Taherdoost, And A. Verma, Eds., Cham: Springer Nature Switzerland, 2024, Pp. 478–484.

A. P. Windarto, T. Herawan, And P. Alkhairi, “Prediction Of Kidney Disease Progression Using K-Means Algorithm Approach On Histopathology Data,” In Artificial Intelligence, Data Science And Applications, Y. Farhaoui, A. Hussain, T. Saba, H. Taherdoost, And A. Verma, Eds., Cham: Springer Nature Switzerland, 2024, Pp. 492–497.

A. Wanto Et Al., “Model Of Artificial Neural Networks In Predictions Of Corn Productivity In An Effort To Overcome Imports In Indonesia,” J. Phys. Conf. Ser., Vol. 1339, No. 1, 2019, Doi: 10.1088/1742-6596/1339/1/012057.

S. Defit, A. P. Windarto, And P. Alkhairi, “Comparative Analysis Of Classification Methods In Sentiment Analysis: The Impact Of Feature Selection And Ensemble Techniques Optimization,” Telematika, Vol. 17, No. 1, Pp. 52–67, 2024.

P. Alkhairi And A. P. Windarto, “Penerapan K-Means Cluster Pada Daerah Potensi Pertanian Karet Produktif Di Sumatera Utara,” Semin. Nas. Teknol. Komput. Sains, Pp. 762–767, 2019.

P. Alkhairi, E. R. Batubara, R. Rosnelly, W. Wanayaumini, And H. S. Tambunan, “Effect Of Gradient Descent With Momentum Backpropagation Training Function In Detecting Alphabet Letters,” Sinkron, Vol. 8, No. 1, Pp. 574–583, 2023, Doi: 10.33395/Sinkron.V8i1.12183.

O. N. A. Al-Allaf, “Improving The Performance Of Backpropagation Neural Network Algorithm For Image Compression/Decompression System,” J. Comput. Sci., Vol. 6, No. 11, Pp. 1347–1354, 2010, Doi: 10.3844/Jcssp.2010.1347.1354.

S. Naufalrifqi, “Optimasi Random Forest Untuk Diagnosis Penyakit Ginjal Kronik Dengan Menggunakan Particle Swarm Optimization,” Pp. 393–400, 2022.

N. Saraswathi, T. Sasi Rooba, And S. Chakaravarthi, “Improving The Accuracy Of Sentiment Analysis Using A Linguistic Rule-Based Feature Selection Method In Tourism Reviews,” Meas. Sensors, Vol. 29, No. May, P. 100888, 2023, Doi: 10.1016/J.Measen.2023.100888.

V. Sunanthini, “Comparison Of Cnn Algorithms For Feature Extraction On Fundus Images To Detect Glaucoma,” J. Healthc. Eng., Vol. 2022, 2022, Doi: 10.1155/2022/7873300.

M. Bhargav, “Comparative Analysis And Design Of Different Approaches For Twitter Sentiment Analysis And Classification Using Svm,” Int. J. Recent Innov. Trends Comput. Commun., Vol. 10, No. 9, Pp. 60–66, 2022, Doi: 10.17762/Ijritcc.V10i9.5706.

Y. Kurniawati And M. Muhajir, “Optimization Of Backpropagation Using Harmony Search For Gold Price Forecasting,” Pakistan J. Stat. Oper. Res., Vol. 18, No. 3, Pp. 589–599, 2022, Doi: 10.18187/Pjsor.V18i3.3915.

D. A. Anggoro, “Comparison Of Performance Metrics Level Of Restricted Boltzmann Machine And Backpropagation Algorithms In Detecting Diabetes Mellitus Disease,” Iraqi J. Sci., Vol. 64, No. 2, Pp. 907–921, 2023, Doi: 10.24996/Ijs.2023.64.2.35.

Y. Zhong, “Comparison Of Artificial Neural Networks And Kinetic Inverse Modeling To Predict Biomass Pyrolysis Behavior,” J. Anal. Appl. Pyrolysis, Vol. 169, 2023, Doi: 10.1016/J.Jaap.2022.105802.

P. Alkhairi, W. Wanayumini, And B. H. Hayadi, “Analysis Of The Adaptive Learning Rate And Momentum Effects On Prediction Problems In Increasing The Training Time Of The Backpropagation Algorithm,” Aip Conf. Proc., Vol. 3048, No. 1, P. 20049, 2024, Doi: 10.1063/5.0203374.

H. Pratiwi Et Al., “Sigmoid Activation Function In Selecting The Best Model Of Artificial Neural Networks,” J. Phys. Conf. Ser., Vol. 1471, No. 1, 2020, Doi: 10.1088/1742-6596/1471/1/012010.

D. H. Tanjung, “Jaringan Saraf Tiruan Dengan Backpropagation Untuk Memprediksi Penyakit Asma,” Creat. Inf. Technol. J., Vol. 2, No. 1, P. 28, 2015, Doi: 10.24076/Citec.2014v2i1.35.

A. L. Breto Et Al., “Deep Learning For Per-Fraction Automatic Segmentation Of Gross Tumor Volume (Gtv) And Organs At Risk (Oars) In Adaptive Radiotherapy Of Cervical Cancer,” Front. Oncol., Vol. 12, 2022, Doi: 10.3389/Fonc.2022.854349.

A. K. Jaiswal And R. Srivastava, “Detection Of Copy-Move Forgery In Digital Image Using Multi-Scale, Multi-Stage Deep Learning Model,” Neural Process. Lett., Vol. 54, No. 1, Pp. 75–100, 2022, Doi: 10.1007/S11063-021-10620-9.

D. Guijo-Rubio Et Al., “Prediction Of Convective Clouds Formation Using Evolutionary Neural Computation Techniques,” Neural Comput. Appl., Vol. 32, No. 17, Pp. 13917–13929, 2020, Doi: 10.1007/S00521-020-04795-W.

L. Heising And S. Angelopoulos, “Operationalising Fairness In Medical Ai Adoption: Detection Of Early Alzheimer’s Disease With 2d Cnn,” Bmj Heal. Care Informatics, Vol. 29, No. 1, Pp. 1–7, 2022, Doi: 10.1136/Bmjhci-2021-100485.

F. H. Wagner Et Al., “K-Textures, A Self-Supervised Hard Clustering Deep Learning Algorithm For Satellite Image Segmentation,” Front. Environ. Sci., Vol. 10, 2022, Doi: 10.3389/Fenvs.2022.946729.

C.-B. Lee And H.-C. Cho, “Application Of Deep Learning-Based Image Segmentation Algorithm For Korean Cattle Weight Estimation,” Trans. Korean Inst. Electr. Eng., Vol. 70, No. 9, Pp. 1336–1344, 2021, Doi: 10.5370/Kiee.2021.70.9.1336.

E. Trivizakis Et Al., “Extending 2-D Convolutional Neural Networks To 3-D For Advancing Deep Learning Cancer Classification With Application To Mri Liver Tumor Differentiation,” Ieee J. Biomed. Heal. Informatics, Vol. 23, No. 3, Pp. 923–930, 2019, Doi: 10.1109/Jbhi.2018.2886276.

N. Yadav, S. M. Alfayeed, A. Khamparia, B. Pandey, D. N. H. Thanh, And S. Pande, “Hsv Model-Based Segmentation Driven Facial Acne Detection Using Deep Learning,” Expert Syst., Vol. 39, No. 3, 2022, Doi: 10.1111/Exsy.12760.

G. Srinivasarao, V. Rajesh, K. Saikumar, M. Baza, G. Srivastava, And M. Alsabaan, “Cloud-Based Lenet-5 Cnn For Mri Brain Tumor Diagnosis And Recognition,” Trait. Du Signal, Vol. 40, No. 4, Pp. 1581 – 1592, 2023, Doi: 10.18280/Ts.400426.

G. Lee, Y.-W. Tai, And J. Kim, “Eld-Net: An Efficient Deep Learning Architecture For Accurate Saliency Detection,” Ieee Trans. Pattern Anal. Mach. Intell., Vol. 40, No. 7, Pp. 1599–1610, 2018, Doi: 10.1109/Tpami.2017.2737631.

W. Chu Et Al., “Bnu-Net: A Novel Deep Learning Approach For Lv Mri Analysis In Short-Axis Mri,” In Proceedings - 2019 Ieee 19th International Conference On Bioinformatics And Bioengineering, Bibe 2019, Institute Of Electrical And Electronics Engineers Inc., 2019, Pp. 731–736. Doi: 10.1109/Bibe.2019.00137.

S. B. Fayyadh And A. A. Ibrahim, “Brain Tumor Detection And Classifiaction Using Cnn Algorithm And Deep Learning Techniques,” In 3rd International Conference On Advanced Science And Engineering, Icoase 2020, Institute Of Electrical And Electronics Engineers Inc., 2020, Pp. 157–161. Doi: 10.1109/Icoase51841.2020.9436599.

R. Ha Et Al., “Prior To Initiation Of Chemotherapy, Can We Predict Breast Tumor Response? Deep Learning Convolutional Neural Networks Approach Using A Breast Mri Tumor Dataset,” J. Digit. Imaging, Vol. 32, No. 5, Pp. 693–701, 2019, Doi: 10.1007/S10278-018-0144-1.

G. Kaur And A. Sharma, “A Deep Learning-Based Model Using Hybrid Feature Extraction Approach For Consumer Sentiment Analysis,” J. Big Data, Vol. 10, No. 1, 2023, Doi: 10.1186/S40537-022-00680-6.

S. E. Sorour, A. A. A. El-Mageed, K. M. Albarrak, A. K. Alnaim, A. A. Wafa, And E. El-Shafeiy, “Classification Of Alzheimer’s Disease Using Mri Data Based On Deep Learning Techniques,” J. King Saud Univ. - Comput. Inf. Sci., Vol. 36, No. 2, P. 101940, 2024, Doi: 10.1016/J.Jksuci.2024.101940.

T. Mahmood, J. Li, Y. Pei, F. Akhtar, M. Ur Rehman, And S. H. Wasti, “Breast Lesions Classifications Of Mammographic Images Using A Deep Convolutional Neural Network-Based Approach,” Plos One, Vol. 17, No. 1 January, Pp. 1–25, 2022, Doi: 10.1371/Journal.Pone.0263126.

A. Patil And M. Rane, “Convolutional Neural Networks: An Overview And Application In Radiology,” Insights Imaging, Vol. 9, Pp. 611–629, 2018, Doi: 10.1007/978-981-15-7078-0_3.

M. Liu, D. Cheng, And W. Yan, “Classification Of Alzheimer’s Disease By Combination Of Convolutional And Recurrent Neural Networks Using Fdg-Pet Images,” Front. Neuroinform., Vol. 12, No. June, Pp. 1–12, 2018, Doi: 10.3389/Fninf.2018.00035.

W. Li And C. Hsu, “Geoai For Large-Scale Image Analysis And Machine Vision : Recent Progress Of Artificial Intelligence In Geography,” 2022.

I. H. Sarker, “Deep Learning: A Comprehensive Overview On Techniques, Taxonomy, Applications And Research Directions,” Sn Comput. Sci., Vol. 2, No. 6, Pp. 1–20, 2021, Doi: 10.1007/S42979-021-00815-1.

A. Ebrahimi, S. Luo, And For The A. Disease Neuroimaging Initiative, “Convolutional Neural Networks For Alzheimer’s Disease Detection On Mri Images,” J. Med. Imaging, Vol. 8, No. 02, Pp. 1–18, 2021, Doi: 10.1117/1.Jmi.8.2.024503.

Y. Chen Et Al., “Automated Alzheimer’s Disease Classification Using Deep Learning Models With Soft-Nms And Improved Resnet50 Integration,” J. Radiat. Res. Appl. Sci., Vol. 17, No. 1, P. 100782, 2024, Doi: 10.1016/J.Jrras.2023.100782.

E. Alhazmi And A. Sheneamer, “Early Predicting Of Students Performance In Higher Education,” Ieee Access, Vol. 11, Pp. 27579 – 27589, 2023, Doi: 10.1109/Access.2023.3250702.

G. Pan, J. Li, F. Lin, T. Sun, And Y. Sun, “A Combined Activation Function For Learning Performance Improvement Of Cnn Image Classification,” No. Icvmee 2019, Pp. 360–366, 2020, Doi: 10.5220/0008851103600366.

N. A. Hamid, N. M. Nawi, R. Ghazali, And M. N. M. Salleh, “Accelerating Learning Performance Of Back Propagation Algorithm By Using Adaptive Gain Together With Adaptive Momentum And Adaptive Learning Rate On Classification Problems,” Int. J. Softw. Eng. Its Appl., Vol. 5, No. 4, Pp. 31–44, 2011.

O. Access, “Adaptive Learning Rate Clipping Stabilizes Learning Adaptive Learning Rate Clipping Stabilizes Learning,” 2020.

Y. Kim Et Al., “Automatic 3d Liver Segmentation Based On Deep Learning And Globally Optimized Surface Evolution,” 2016, Doi: 10.1088/1361-6560/61/24/8676.

E. G. Winarto, Rahmayati, And A. Lawi, “Implementasi Arsitektur Inception Resnet-V2 Untuk Klasifikasi Kualitas Biji Kakao,” Konf. Nas. Ilmu Komput. 2021 , Pp. 132–137, 2021.

J. Kolbusz, P. Rozycki, O. Lysenko, And B. M. Wilamowski, “Error Back Propagation Algorithm With Adaptive Learning Rate,” Proc. Int. Conf. Inf. Digit. Technol. 2019, Idt 2019, No. 2015, Pp. 216–222, 2019, Doi: 10.1109/Dt.2019.8813440.

H. Prabowo, A. A. Hidayat, T. W. Cenggoro, R. Rahutomo, K. Purwandari, And B. Pardamean, “Aggregating Time Series And Tabular Data In Deep Learning Model For University Students’ Gpa Prediction,” Ieee Access, Vol. 9, Pp. 87370 – 87377, 2021, Doi: 10.1109/Access.2021.3088152.

L. Ramanathan, G. Parthasarathy, K. Vijayakumar, L. Lakshmanan, And S. Ramani, “Cluster-Based Distributed Architecture For Prediction Of Student’s Performance In Higher Education,” Cluster Comput., Vol. 22, Pp. 1329 – 1344, 2019, Doi: 10.1007/S10586-017-1624-7.

S. Ghose, N. Singh, And P. Singh, “Image Denoising Using Deep Learning: Convolutional Neural Network,” In Proceedings Of The Confluence 2020 - 10th International Conference On Cloud Computing, Data Science And Engineering, Institute Of Electrical And Electronics Engineers Inc., 2020, Pp. 511–517. Doi: 10.1109/Confluence47617.2020.9057895.

A. U. Khasanah And H. Harwati, “Educational Data Mining Techniques Approach To Predict Student’s Performance,” Int. J. Inf. Educ. Technol., Vol. 9, No. 2, Pp. 115 – 118, 2019, Doi: 10.18178/Ijiet.2019.9.2.1184.

Y. Qin, J. Wang, Y. Han, And L. Lu, “Deep Learning Algorithms-Based Ct Images In Glucocorticoid Therapy In Asthma Children With Small Airway Obstruction,” J. Healthc. Eng., Vol. 2021, 2021, Doi: 10.1155/2021/5317403.

C. Venkatesh And P. Bojja, “A Dynamic Optimization And Deep Learning Technique For Detection Of Lung Cancer In Ct Images And Data Access Through Internet Of Things,” Wirel. Pers. Commun., Vol. 125, No. 3, Pp. 2621–2646, 2022, Doi: 10.1007/S11277-022-09676-0.

S. Saha Roy, S. Roy, P. Mukherjee, And A. Halder Roy, “An Automated Liver Tumour Segmentation And Classification Model By Deep Learning Based Approaches,” Comput. Methods Biomech. Biomed. Eng. Imaging Vis., 2022, Doi: 10.1080/21681163.2022.2099300.

Q. Jingliang, “A Grade Prediction Method Based On Long Short-Term Memory Network In Smart Campus,” In 2022 Ieee 5th International Conference On Information Systems And Computer Aided Education, Iciscae 2022, Institute Of Electrical And Electronics Engineers Inc., 2022, Pp. 345 – 350. Doi: 10.1109/Iciscae55891.2022.9927654.

S. Gowroju, Aarti, And S. Kumar, “Robust Deep Learning Technique: U-Net Architecture For Pupil Segmentation,” In 11th Annual Ieee Information Technology, Electronics And Mobile Communication Conference, Iemcon 2020, P. R., Ed., Institute Of Electrical And Electronics Engineers Inc., 2020, Pp. 609–613. Doi: 10.1109/Iemcon51383.2020.9284947.

J. Veri, S. Surmayanti, And G. Guslendra, “Prediksi Harga Minyak Mentah Menggunakan Jaringan Syaraf Tiruan,” Matrik J. Manajemen, Tek. Inform. Dan Rekayasa Komput., Vol. 21, No. 3, Pp. 503–512, 2022, Doi: 10.30812/Matrik.V21i3.1382.

S. Pohan, B. Warsito, And S. Suryono, “Backpropagation Artificial Neural Network For Prediction Plant Seedling Growth,” J. Phys. Conf. Ser., Vol. 1524, No. 1, 2020, Doi: 10.1088/1742-6596/1524/1/012147.

M. B. S. Krishnamoorthy, A. Chakravarty, K. Jadhav, And R. Gupta, “Predicting Student Performance In Higher Education Using A Cluster-Based Distributed Architecture (Cda),” Int. J. Intell. Syst. Appl. Eng., Vol. 11, No. 8s, Pp. 101 – 109, 2023, [Online]. Available: Https://Www.Scopus.Com/Inward/Record.Uri?Eid=2-S2.0-85165630331&Partnerid=40&Md5=117227addcb70a36a93a786263631a79

A. S. Günter Şenyurt, “Forecasting The Price Index Return And Movement Direction Using Data Mining Techniques,” No. 7, Pp. 150–162, 2015.

S. A. Ebiaredoh-Mienye, E. Esenogho, And T. G. Swart, “Integrating Enhanced Sparse Autoencoder-Based Artificial Neural Network Technique And Softmax Regression For Medical Diagnosis,” 2020.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.