Implementasi Algoritma Backpropagation Untuk Prediksi Jumlah Siswa SMA
Abstract
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 194 timesPDF - 117 times
References
R. I. Kemdikbud, “Profil SMA: SMA Dari Masa ke Masa,” https://repositori.kemdikbud.go.id/18468/1/SMA%20dari%20Masa%20ke%20Masa.pdf, p. 2, 2017.
A. M. Sitompul, S. Tunas Bangsa, S. Utara, A. Tunas Bangsa, and I. A. Jln Sudirman Blok No, “Teknik Data Mining Dalam Prediksi Jumlah Siswa Baru Dengan Algoritma Naive Bayes,” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 2, no. 2, pp. 108–117, 2021.
Chalimatus Salamah, “Faktor-Faktor Yang Mempengaruhi Penurunan Jumlah Siswa Di Sma Al Yaqin Sluke Kabupaten Rembang,” p. 13, 2022.
C. F. Ramadhani, M. N. H. Siregar, I. R. Rahadjeng, and A. P. Windarto, “Penerapan Pemilihan Model Arsitektur Terbaik pada Neural Network pada Prediksi Jumlah Siswa SD di Kecamatan Siantar Barat,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1647–1657, 2022, doi: 10.47065/bits.v4i3.2676.
Budiharjo, T. Soemartono, A. P. Windarto, and T. Herawan, “Predicting School Participation in Indonesia using Back-Propagation Algorithm Model,” Int. J. Control Autom., vol. 11, no. 11, pp. 57–68, 2018.
A. Wanto et al., “Model of Artificial Neural Networks in Predictions of Corn Productivity in an Effort to Overcome Imports in Indonesia,” J. Phys. Conf. Ser., vol. 1339, no. 1, 2019, doi: 10.1088/1742-6596/1339/1/012057.
Sumijan, A. P. Windarto, A. Muhammad, and Budiharjo, “Implementation of neural networks in predicting the understanding level of students subject,” Int. J. Softw. Eng. its Appl., vol. 10, no. 10, pp. 189–204, 2016, doi: 10.14257/ijseia.2016.10.10.18.
H. Pratiwi et al., “Sigmoid Activation Function in Selecting the Best Model of Artificial Neural Networks,” J. Phys. Conf. Ser., vol. 1471, no. 1, 2020, doi: 10.1088/1742-6596/1471/1/012010.
D. Putra and A. Wibowo, “Prediksi Keputusan Minat Penjurusan Siswa SMA Yadika 5 Menggunakan Algoritma Naïve Bayes,” Pros. Semin. Nas. Ris. Dan Inf. Sci., vol. 2, pp. 84–92, 2020.
N. Kahar and W. Aritonang, “Implementasi Jaringan Syaraf Tiruan Dengan Algoritma Perceptron Dalam Penentuan Program Studi Mahasiswa Baru,” J. Akad., vol. 14, no. 2, pp. 74–80, 2022, doi: 10.53564/akademika.v14i2.864.
S. E. Sorour, A. A. A. El-Mageed, K. M. Albarrak, A. K. Alnaim, A. A. Wafa, and E. El-Shafeiy, “Classification of Alzheimer’s disease using MRI data based on Deep Learning Techniques,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 2, p. 101940, 2024, doi: 10.1016/j.jksuci.2024.101940.
H. D. Cheng, J. Shan, W. Ju, Y. Guo, and L. Zhang, “Automated breast cancer detection and classification using ultrasound images: A survey,” Pattern Recognit., vol. 43, no. 1, pp. 299–317, 2010, doi: 10.1016/j.patcog.2009.05.012.
I. K. Nti, A. F. Adekoya, and B. A. Weyori, “A comprehensive evaluation of ensemble learning for stock-market prediction,” J. Big Data, vol. 7, no. 1, 2020, doi: 10.1186/s40537-020-00299-5.
E. A. Yekun and A. T. Haile, “Student Performance Prediction with Optimum Multilabel Ensemble Model,” J. Intell. Syst., vol. 30, no. 1, pp. 511–523, 2021, doi: 10.1515/jisys-2021-0016.
L. Friska Narulita and I. Ahmad, “Penerapan Metode Fuzzy Mamdani Dalam Rancang Bangun Sistem Informasi Prediksi Produksi Barang,” Luvia Friska Narulita dan Ququh Imanuddin Ahmad Mult. J. Glob. Multidiscip., vol. 2, no. 1, pp. 1016–1026, 2024.
V. M. Nasution and G. Prakarsa, “Perancangan Aplikasi Fuzzy Logic Untuk Prediksi Kasus Positif Covid-19 Menggunakan Metode Tsukamoto,” J. Media Inform. Budidarma, vol. 5, no. 4, p. 1642, 2021, doi: 10.30865/mib.v5i4.3338.
N. Saraswathi, T. Sasi Rooba, and S. Chakaravarthi, “Improving the accuracy of sentiment analysis using a linguistic rule-based feature selection method in tourism reviews,” Meas. Sensors, vol. 29, no. May, p. 100888, 2023, doi: 10.1016/j.measen.2023.100888.
M. Adnan et al., “Predicting at-Risk Students at Different Percentages of Course Length for Early Intervention Using Machine Learning Models,” IEEE Access, vol. 9, pp. 7519–7539, 2021, doi: 10.1109/ACCESS.2021.3049446.
M. Bordoloi and S. K. Biswas, Sentiment analysis: A survey on design framework, applications and future scopes, vol. 56, no. 11. Springer Netherlands, 2023. doi: 10.1007/s10462-023-10442-2.
A. Namoun and A. Alshanqiti, “Predicting student performance using data mining and learning analytics techniques: A systematic literature review,” Appl. Sci., vol. 11, no. 1, pp. 1 – 28, 2021, doi: 10.3390/app11010237.
C. W. Teoh, S. B. Ho, K. S. Dollmat, and C. H. Tan, “Ensemble-Learning Techniques for Predicting Student Performance on Video-Based Learning,” Int. J. Inf. Educ. Technol., vol. 12, no. 8, pp. 741–745, 2022, doi: 10.18178/ijiet.2022.12.8.1679.
C. J. Paul and R. Santhi, “Ensemble swarm based feature selection (ESFS) and ensemble three classifiers (ETCS) to predict student’s academic performance,” Int. J. Eng. Adv. Technol., vol. 8, no. 6 Special issue, pp. 452 – 464, 2019, doi: 10.35940/ijeat.F1096.0886S19.
S. Syaharuddin, F. Fatmawati, and H. Suprajitno, “The Formula Study in Determining the Best Number of Neurons in Neural Network Backpropagation Architecture with Three Hidden Layers,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 3, pp. 397–402, 2022, doi: 10.29207/resti.v6i3.4049.
E. H. Damanik, E. Irawan, and F. Rizki, “Jaringan Syaraf Tiruan Untuk Mempredikiksi Nilai Siswa SMA Menggunakan Backpropagation,” vol. 4, no. 2, pp. 1–7, 2021.
R. F. Siahaan, “Implementasi Algoritma Backpropagation Untuk Memprediksi Bakat Siswa Dalam Pemilihan Jurusan Perguruan Tinggi PadaSMA Negri 2 Perbaungan,” vol. 2, no. 2, pp. 85–91, 2021.
S. S. Nasution, H. Okprana, and I. S. Saragih, “Analisis Metode Backpropragation DalamMemprediksi Kelulusan Mahasiswa Studi Kasus STIKOM Tunas Bangsa,” TIN Terap. Inform. Nusant., vol. 2, no. 5, pp. 328–334, 2021.
Y. Aprizal, R. I. Zainal, and A. Afriyudi, “Perbandingan Metode Backpropagation dan Learning Vector Quantization (LVQ) Dalam Menggali Potensi Mahasiswa Baru di STMIK PalComTech,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 18, no. 2, pp. 294–301, 2019, doi: 10.30812/matrik.v18i2.387.
A. P. Windarto, S. Defit, and A. Wanto, “Optimalisasi Parameter dengan Cross Validation dan Neural Back-propagation Pada Model Prediksi Pertumbuhan Industri Mikro dan Kecil,” J. Sist. Inf. Bisnis, vol. 11, no. 1, pp. 34–42, 2021, doi: 10.21456/vol11iss1pp34-42.
B. Fachri, A. P. Windarto, and I. Parinduri, “Penerapan Backpropagation dan Analisis Sensitivitas pada Prediksi Indikator Terpenting Perusahaan Listrik,” J. Edukasi dan Penelit. Inform., vol. 5, no. 2, p. 202, 2019, doi: 10.26418/jp.v5i2.31650.
M. A. F. I. Aslim, J. Jasruddin, P. Palloan, H. Helmi, M. Arsyad, and H. Triwibowo, “Monthly Rainfall Prediction Using the Backpropagation Neural Network (BPNN) Algorithm in Maros Regency,” Sci. J. Informatics, vol. 10, no. 1, pp. 13–24, 2023, doi: 10.15294/sji.v10i1.37982.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA
This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.