Analyzing the Sentiment of the 2024 Election Sirekap Application Using Naïvee Bayes Algorithm

 (*)Isa Ali Muhammad Mail (Universitas Amikom Purwokerto, Purwokerto, Indonesia)
 Desty Rakhmawati (Universitas Amikom Purwokerto, Purwokerto, Indonesia)
 Anugerah Bagus Wijaya (Universitas Amikom Purwokerto, Purwokerto, Indonesia)

(*) Corresponding Author

Submitted: June 6, 2024; Published: July 26, 2024

Abstract

One of the most recent types of elections is the 2024 election, which includes the election of the president as well as legislative members. Along with the development of technology, an application called Sirekap emerged which is used to recapitulate the results of the vote. Although the app only has a one-star rating on the Play Store, reading all the user reviews to know the quality takes quite a while. Therefore, sentiment analysis can be an alternative to get an overview of user reviews so that it can help in making better decisions then, the method that will be used in conducting sentiment analysis in this study is the naïve Bayes algorithm. This research aims to identify and categorize user sentiment, as well as evaluate the quality of the app based on reviews provided on the Playstore. This research contributes by providing an efficient method to analyze user reviews of the Sirekap app, which can assist app developers and other stakeholders in making better decisions regarding app development and improvement. In addition, the results of this study confirm that the app's one-star rating is accurate, with evaluation metrics such as precision, memory, and f1 score reaching 1.00 each.

Keywords


Sentiment Analysis; Data Minning; Naïve Bayes; Sirekap Appliaction; Elections

Full Text:

PDF


Article Metrics

Abstract view : 125 times
PDF - 90 times

References

E. Indrayuni, A. Nurhadi, and D. A. Kristiyanti, “Implementasi Algoritma Naive Bayes, Support Vector Machine, dan K-Nearest Neighbors untuk Analisa Sentimen Aplikasi Halodoc,” Faktor Exacta, vol. 14, no. 2, p. 64, Aug. 2021, doi: 10.30998/faktorexacta.v14i2.9697.

S. Janu et al., “ANALISIS PERBANDINGAN ALGORITMA NAIVE BAYES DAN C.45 DALAM KLASIFIKASI DATA MINING UNTUK MEMPREDIKSI KELULUSAN,” 2021.

D. Y. Utami, E. Nurlelah, and F. N. Hasan, “Comparison of Neural Network Algorithms, Naive Bayes and Logistic Regression to predict diabetes,” JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, vol. 5, no. 1, pp. 53–64, Jul. 2021, doi: 10.31289/jite.v5i1.5201.

K. Anwar, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisa sentimen Pengguna Instagram Di Indonesia Pada Review Smartphone Menggunakan Naive Bayes,” vol. 2, no. 4, pp. 148–155, 2022, [Online]. Available: https://djournals.com/klik

M. Rezki, D. N. Kholifah, M. Faisal, R. Suryadithia, U. Bina, and S. Informatika, “Analisis Review Pengguna Google Meet dan Zoom Cloud Meeting Menggunakan Algoritma Naïve Bayes,”2023 [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/infortech264

D. K. Fitri, N. Sri, M. Lestari, J. Ilmu, K. Jurusan, and I. Komputer, “Implementasi Algoritma Naïve Bayes Menggunakan Feature Forward Selection dan SMOTE Untuk Memprediksi Ketepatan Masa Studi Mahasiswa Sarjana,” 2022.

A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Riset Komputer), vol. 8, no. 6, p. 219, Dec. 2021, doi: 10.30865/jurikom.v8i6.3655.

Anisa Halifa and R. Novita, “APPLICATION OF NAÏVE BAYES CLASSIFIER ALGORITHM IN DETERMINING THE LEVEL OF CUSTOMER SATISFACTION WITH RUMBAI POST OFFICE SERVICES,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 6, pp. 1295–1304, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.1054.

I. Budiman, “IMPLEMENTASI ALGORITMA NAÏVE BAYES PADA SISTEM PAKAR DIAGNOSA PENYAKIT TIFOID BERBASIS WEB,” 2022.

D. N. Novianti, D. F. Shiddieq, F. F. Roji, and W. Susilawati, “Komparasi Algoritma Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Metaverse,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 231–239, Jan. 2024, doi: 10.57152/malcom.v4i1.1061.

S. Alpin Rizaldi, S. Alam, and I. Kurniawan, “ANALISIS SENTIMEN PENGGUNA APLIKASI JMO (JAMSOSTEK MOBILE) PADA GOOGLE PLAY STORE MENGGUNAKAN METODE NAIVE BAYES 1),” vol. 2, no. 3, pp. 109–117, 2023, doi: 10.55123.

K. M. Elistiana, Bagus Adhi Kusuma, P. Subarkah, and H. A. Awal Rozaq, “IMPROVEMENT OF NAIVE BAYES ALGORITHM IN SENTIMENT ANALYSIS OF SHOPEE APPLICATION REVIEWS ON GOOGLE PLAY STORE,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 6, pp. 1431–1436, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.1486.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” Jurnal KomtekInfo, pp. 1–7, Jan. 2023, doi: 10.35134/komtekinfo.v10i1.330.

F. Akmali, A. D. Riyanto, and I. Darmayanti, “OPTIMIZATION NAÏVE BAYES ALGORITHM IN SENTIMENT ANALYSIS OF BUKALAPAK APP REVIEWS,” Sinkron, vol. 9, no. 1, pp. 145–151, Jan. 2024, doi: 10.33395/sinkron.v9i1.13132.

M. Hudha, E. Supriyati, and T. Listyorini, “ANALISIS SENTIMEN PENGGUNA YOUTUBE TERHADAP TAYANGAN #MATANAJWAMENANTITERAWAN DENGAN METODE NAÏVE BAYES CLASSIFIER,” Jurnal Informatika dan Komputer) Akreditasi KEMENRISTEKDIKTI, vol. 5, no. 1, pp. 2614–8897, 2022, doi: 10.33387/jiko.

A. R. Damanik, S. Sumijan, and G. W. Nurcahyo, “Prediksi Tingkat Kepuasan dalam Pembelajaran Daring Menggunakan Algoritma Naïve Bayes,” Jurnal Sistim Informasi dan Teknologi, pp. 88–94, Aug. 2021, doi: 10.37034/jsisfotek.v3i3.49.

N. Riyanah, S. Informasi, S. Tinggi, M. Informatika, D. Komputer, and N. Mandiri, “Penerapan Algoritma Naive Bayes Untuk Klasifikasi Penerima Bantuan Surat Keterangan Tidak Mampu (Implementation of Algorithms Naïve Bayes for Classification Recipients Help Letter Description Not Able),” vol. 2, no. 4, pp. 206–213, 2021.

M. Afriansyah, J. Saputra, V. Yoga Pudya Ardhana, Y. Sa, and U. Qamarul Huda Badaruddin, “ALGORITMA NAIVE BAYES YANG EFISIEN UNTUK KLASIFIKASI BUAH PISANG RAJA BERDASARKAN FITUR WARNA,” Hal. 236 Journal of Information Systems Management and Digital Business (JISMDB), vol. 1, no. 2, 2024.

C. Aulia Sari, A. Sukmawati, R. Putri Aprilli, P. Sarah Kayaningtias, and N. Yudistira, “PERBANDINGAN METODE NAÏVE BAYES, SUPPORT VECTOR MACHINE DAN DECISION TREE DALAM KLASIFIKASI KONSUMSI OBAT,” vol. 3, pp. 33–41, 2022, doi: 10.51402/jle.v3i1.47.

N. S. Fauziah and R. D. Dana, “Implementasi Algoritma Naive bayes dalam Klasifikasi Status Kesejahteraan Masyarakat Desa Gunungsari,” Blend Sains Jurnal Teknik, vol. 1, no. 4, pp. 295–305, Mar. 2023, doi: 10.56211/blendsains.v1i4.234.

A. Felicia Watratan, A. B. Puspita, D. Moeis, S. Informasi, and S. Profesional Makassar, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” 2020. [Online]. Available: http://journal.isas.or.id/index.php/JACOST

Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, pp. 820–826, Aug. 2021, doi: 10.29207/resti.v5i4.3146.

R. Retnosari, P. Studi, S. Informasi, S. Nusa, and M. Jakarta, “ANALISIS KELAYAKAN KREDIT USAHA MIKRO BERJALAN PADA PERBANKAN DENGAN METODE NAIVE BAYES,” 2022.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.