Penggunaan Naïve Bayes Classifier dalam Analisis Sentimen Ulasan Aplikasi McDonald's: Perspektif Pengguna di Indonesia

Salsha Dara Shinta Kurniawan, Akhmad Fauzy

Abstract


The McDonald's mobile app has become popular among users, who often review their experiences through various review platforms. However, the sheer number of reviews suggests that the app's performance is still not satisfactory. This research aims to analyze public sentiment towards McDonald's app reviews using the Naïve Bayes Classifier algorithm. This algorithm was chosen because of its ability to classify text based on probability and its wide use in sentiment analysis. The research process began with the collection of review data totaling 4.996. Of these, 1.575 data showed neutral sentiment, while 2.137 data revealed positive sentiment, and 1.104 data showed negative sentiment towards the app. However, for the purposes of analysis using the Naïve Bayes algorithm, the focus is only on data that has positive and negative sentiment labels. Thus, the total amount of data used is 3.241 data, consisting of 2.137 positive data and 1.104 negative data. Followed by text pre-processing which includes cleaning, normalization, stopwords, stemming, tokenizing. The dataset is then divided into training data (80%) and testing data (20%). Naïve Bayes Classifier algorithm is used to classify the reviews into positive, negative, and neutral categories ignored. The results show that this model has an 90% accuracy rate in classifying sentiment. This analysis is necessary for the company's evaluation in order to know the public sentiment regarding the McDonald's app. The conclusion of this study shows that although the Naïve Bayes Classifier algorithm is quite effective in the sentiment classification of McDonald's app reviews, it is not enough to classify the sentiment of the McDonald's app.

Keywords


Application; McDonald's; Naïve Bayes Classifier; Sentiment

Full Text:

PDF

References


D. Aulianida, S. I. Liestyasari, and S. R. Ch, “Mediatisasi Layanan Pesan Antar Makanan di Indonesia Melalui Aplikasi Go-Food,†Islam. Commun. J., vol. 5, no. 1, pp. 114–124, 2020. https://doi.org/10.21580/icj.2020.5.1.5416

I. Larasati, A. N. Yusril, and P. Al Zukri, “Systematic Literature Review Analisis Metode Agile Dalam Pengembangan Aplikasi Mobile,†Sistemasi, vol. 10, no. 2, p. 369, 2021, doi: 10.32520/stmsi.v10i2.1237.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,†J. Teknoinfo, vol. 14, no. 2, p. 115, 2020, doi: 10.33365/jti.v14i2.679.

Merinda Lestandy, Abdurrahim Abdurrahim, and Lailis Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 802–808, 2021, doi: 10.29207/resti.v5i4.3308.

S. I. Cirebon, “ANALISIS SENTIMEN PADA APLIKASI KFCKU Di GOOGLE PLAYSTORE MENGGUNAKAN NAÃVE BAYES,†(Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3010–3016, 2024. https://doi.org/10.36040/jati.v8i1.8708

N. Artina, “Pengaruh Persepsi Manfaat , Persepsi Kemudahan , Kepercayaan Dan Fitur Layanan Terhadap Tingkat Kepuasan Pelanggan Dalam Menggunakan E-Money Di Kota Palembang,†J. Ilm. Ekon. Dan Bisnis Univ. Multi Data Palembang, vol. 11, no. 1, pp. 120–131, 2021. https://doi.org/10.20527/jbp.v11i1.13133

T. Widyanto, I. Ristiana, and A. Wibowo, “Komparasi Naïve Bayes dan SVM Analisis Sentimen RUU Kesehatan di Twitter,†SINTECH (Science Inf. Technol. J., vol. 6, no. 3, pp. 147–161, 2023, doi: 10.31598/sintechjournal.v6i3.1433.

Ernianti Hasibuan and Elmo Allistair Heriyanto, “Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier,†J. Tek. dan Sci., vol. 1, no. 3, pp. 13–24, 2022, doi: 10.56127/jts.v1i3.434.

D. R. Fathwa Daud, B. Irawan, and A. Bahtiar, “Penerapan Metode Naive Bayes Pada Analisis Sentimen Aplikasi Mcdonalds Di Google Play Store,†JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 759–766, 2024, doi: 10.36040/jati.v8i1.8784.

T. Arifqi, N. Suarna, and W. Prihartono, “Penggunaan Naive Bayes Dalam Menganalisis Sentimen Ulasan Aplikasi Mcdonald’S Di Indonesia,†JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1949–1956, 2024, doi: 10.36040/jati.v8i2.8740.

Permana A, Taufiq R, and Wijaya M, “Implementasi Algoritma Naïve Bayes Terhadap Review Aplikasi KFCKU,†J. Tek., vol. Vol. 12 N, no. 02, pp. 128–137, 2023. http://dx.doi.org/10.31000/jt.v12i2.10646

A. Nurian, M. S. Ma’arif, I. N. Amalia, and C. Rozikin, “Analisis Sentimen Pengguna Aplikasi Shopee Pada Situs Google Play Menggunakan Naive Bayes Classifier,†J. Inform. dan Tek. Elektro Terap., vol. 12, no. 1, pp. 704–713, 2024, doi: 10.23960/jitet.v12i1.3631.

A. Y. Simanjuntak, I. S. E. S. Simatupang, and A. Anita, “Implementasi Data Mining Menggunakan Metode NaãÂVe Bayes Classifier Untuk Data Kenaikan Pangkat Dinas Ketenagakerjaan Kota Medan,†J. Sci. Soc. Res., vol. 5, no. 1, p. 85, 2022, doi: 10.54314/jssr.v5i1.804.

A. Z. Amrullah, A. Sofyan Anas, and M. A. J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,†Jurnal, vol. 2, no. 1, pp. 40–44, 2020, doi: 10.30812/bite.v2i1.804.

D. Nurwahidah, G. Dwilestari, N. Dienwati Nuris, and R. Narasati, “Analisis Sentimen Data Ulasan Pengguna Aplikasi Google Kelas Pada Google Play Store Menggunakan Algoritma Naïve Bayes,†JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3673–3678, 2024, doi: 10.36040/jati.v7i6.8245.

L. Siliayani, Iqbal Agis Junizar, Uyu Nuraeni, Edi Tohidi, and Irfan Ali, “Penerapan Algoritma Naive Bayes Untuk Mengetahui Kepuasan Mahasiswa Terhadap Layanan Administrasi Keuangan,†KOPERTIP J. Ilm. Manaj. Inform. dan Komput., vol. 4, no. 3, pp. 72–79, 2020, doi: 10.32485/kopertip.v4i3.122.

T. Ernayanti, M. Mustafid, A. Rusgiyono, and A. R. Hakim, “Penggunaan Seleksi Fitur Chi-Square Dan Algoritma Multinomial Naïve Bayes Untuk Analisis Sentimen Pelangggan Tokopedia,†J. Gaussian, vol. 11, no. 4, pp. 562–571, 2023, doi: 10.14710/j.gauss.11.4.562-571.

N. Nofiyani and W. Wulandari, “Implementasi Electronic Data Processing Untuk meningkatkan Efektifitas dan Efisiensi Pada Text Mining,†J. Media Inform. Budidarma, vol. 6, no. 3, p. 1621, 2022, doi: 10.30865/mib.v6i3.4332.

O. Irnawati and K. Solecha, “Analisis Sentimen Ulasan Aplikasi Flip Menggunakan Naïve Bayes dengan Seleksi Fitur PSO,†J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 02, pp. 189–199, 2022, doi: 10.46772/intech.v4i02.868.

B. Herwijayanti, D. E. Ratnawati, and L. Muflikhah, “Klasifikasi Berita Online dengan menggunakan Pembobotan TF-IDF dan Cosine Similarity,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 1, pp. 306–312, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

E. Indrayuni, “Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes,†J. Khatulistiwa Inform., vol. 7, no. 1, pp. 29–36, 2019, doi: 10.31294/jki.v7i1.1.

J. Winahyu and I. Suharjo, “Aplikasi Web Analisis Sentimen Dengan Algoritma Multinomial Naïve Bayes,†vol. 10, pp. 206–214, 2021. https://doi.org/10.23887/karmapati.v10i2.36609




DOI: https://doi.org/10.30865/mib.v8i3.7765

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.