Optimizing Emotion Recognition with Wearable Sensor Data: Unveiling Patterns in Body Movements and Heart Rate through Random Forest Hyperparameter Tuning

Zikri Kholifah Nur, Rifki Wijaya, Gia Septiana Wulandari

Abstract


This research delves into the utilization of smartwatch sensor data and heart rate monitoring to discern individual emotions based on body movement and heart rate. Emotions play a pivotal role in human life, influencing mental well-being, quality of life, and even physical and physiological responses. The data were sourced from prior research by Juan C. Quiroz, PhD. The study enlisted 50 participants who donned smartwatches and heart rate monitors while completing a 250-meter walk. Emotions were induced through both audio-visual and audio stimuli, with participants' emotional states evaluated using the PANAS questionnaire. The study scrutinized three scenarios: viewing a movie before walking, listening to music before walking, and listening to music while walking. Personal baselines were established using DummyClassifier with the 'most_frequent' strategy from the sklearn library, and various models, including Logistic Regression and Random Forest, were employed to gauge the impacts of these activities. Notably, a novel approach was undertaken by incorporating hyperparameter tuning to the Random Forest model using RandomizedSearchCV. The outcomes showcased substantial enhancements with hyperparameter tuning in the Random Forest model, yielding mean accuracies of 86.63% for happy vs. sad and 76.33% for happy vs. neutral vs. sad.

Keywords


Smartwatch; Hyperparameter Tuning RF; Emotional States; Physical Movement; Heart Rate

Full Text:

PDF

References


C. L. Park et al., “Emotional Well-Being: What It Is and Why It Matters,†Affect Sci, vol. 4, no. 1, pp. 10–20, Mar. 2023, doi: 10.1007/s42761-022-00163-0.

R. Sun et al., “Emotional experiences and psychological well-being in 51 countries during the COVID-19 pandemic.,†Emotion, vol. 24, no. 2, pp. 397–411, Mar. 2024, doi: 10.1037/emo0001235.

A. López-Alcarria, A. Olivares-Vicente, and F. Poza-Vilches, “A Systematic Review of the Use of Agile Methodologies in Education to Foster Sustainability Competencies,†Sustainability, vol. 11, no. 10, p. 2915, May 2019, doi: 10.3390/su11102915.

S. Shajari, K. Kuruvinashetti, A. Komeili, and U. Sundararaj, “The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review,†Sensors, vol. 23, no. 23, p. 9498, Nov. 2023, doi: 10.3390/s23239498.

M. Guo, X. Zhang, Z. Niu, and Z. Gao, “Wearable Devices for Emotion Visualization: State of the Art, Benefits, and Challenges,†in Proceedings of the 11th International Conference on Digital and Interactive Arts, New York, NY, USA: ACM, Nov. 2023, pp. 1–10. doi: 10.1145/3632776.3632794.

S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is a revolutionary approach for future technology enhancement: a review,†J Big Data, vol. 6, no. 1, pp. 1–21, Dec. 2019, doi: 10.1186/S40537-019-0268-2/FIGURES/9.

T. Wang and H. Zhang, “Using Wearable Devices for Emotion Recognition in Mobile Human- Computer Interaction: A Review,†Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13519 LNCS, pp. 205–227, 2022, doi: 10.1007/978-3-031-17618-0_16/FIGURES/6.

S. Saganowski et al., “Emotion Recognition Using Wearables: A Systematic Literature Review Work in progress,†Dec. 2019.

S. Pal, S. Mukhopadhyay, and N. Suryadevara, “Development and Progress in Sensors and Technologies for Human Emotion Recognition,†Sensors, vol. 21, no. 16, p. 5554, Aug. 2021, doi: 10.3390/s21165554.

J. C. Quiroz, E. Geangu, and M. H. Yong, “Emotion Recognition Using Smart Watch Sensor Data: Mixed-Design Study,†JMIR Ment Health, vol. 5, no. 3, p. e10153, Aug. 2018, doi: 10.2196/10153.

A. V. Geetha, T. Mala, D. Priyanka, and E. Uma, “Multimodal Emotion Recognition with Deep Learning: Advancements, challenges, and future directions,†Information Fusion, vol. 105, p. 102218, May 2024, doi: 10.1016/J.INFFUS.2023.102218.

I. Brdar, “Positive and Negative Affect Schedule (PANAS),†Encyclopedia of Quality of Life and Well-Being Research, pp. 5310–5313, 2023, doi: 10.1007/978-3-031-17299-1_2212.

D. L. Shanthi and N. Chethan, “Genetic Algorithm Based Hyper-Parameter Tuning to Improve the Performance of Machine Learning Models,†SN Comput Sci, vol. 4, no. 2, pp. 1–8, Mar. 2023, doi: 10.1007/S42979-022-01537-8/TABLES/1.

S. González, S. García, J. Del Ser, L. Rokach, and F. Herrera, “A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities,†Information Fusion, vol. 64, pp. 205–237, Dec. 2020, doi: 10.1016/J.INFFUS.2020.07.007.

P. Probst, “Hyperparameters, tuning and meta-learning for random forest and other machine learning algorithms,†Jul. 2019, Ludwig-Maximilians-Universität München. [Online]. Available: http://nbn-resolving.de/urn:nbn:de:bvb:19-245579

M. Dhilsath Fathima and S. J. Samuel, “Hyperparameter Tuning of Ensemble Classifiers Using Grid Search and Random Search for Prediction of Heart Disease,†Computational Intelligence and Healthcare Informatics, pp. 139–158, Oct. 2021, doi: 10.1002/9781119818717.CH8.

K. Pal and B. V. Patel, “Emotion classification with reduced feature set sgdclassifier, random forest and performance tuning,†Communications in Computer and Information Science, vol. 1235 CCIS, pp. 95–108, 2020, doi: 10.1007/978-981-15-6648-6_8/FIGURES/8.

P. Probst, M. N. Wright, and A. Boulesteix, “Hyperparameters and tuning strategies for random forest,†WIREs Data Mining and Knowledge Discovery, vol. 9, no. 3, May 2019, doi: 10.1002/widm.1301.

P. J. Bota, C. Wang, A. L. N. Fred, and H. Placido Da Silva, “A Review, Current Challenges, and Future Possibilities on Emotion Recognition Using Machine Learning and Physiological Signals,†IEEE Access, vol. 7, pp. 140990–141020, 2019, doi: 10.1109/ACCESS.2019.2944001.

S. Koelstra et al., “DEAP: A database for emotion analysis; Using physiological signals,†IEEE Trans Affect Comput, vol. 3, no. 1, pp. 18–31, Jan. 2012, doi: 10.1109/T-AFFC.2011.15.

R. H. Jhaveri, A. Revathi, K. Ramana, R. Raut, and R. K. Dhanaraj, “A Review on Machine Learning Strategies for Real-World Engineering Applications,†Mobile Information Systems, vol. 2022, pp. 1–26, Aug. 2022, doi: 10.1155/2022/1833507.

M. K. Suryadi, R. Herteno, S. W. Saputro, M. R. Faisal, and R. A. Nugroho, “Comparative Study of Various Hyperparameter Tuning on Random Forest Classification With SMOTE and Feature Selection Using Genetic Algorithm in Software Defect Prediction,†Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 6, no. 2, pp. 137–147, Mar. 2024, doi: 10.35882/jeeemi.v6i2.375.

A. Saidi, S. Ben Othman, M. Dhouibi, and S. Ben Saoud, “FPGA-based implementation of classification techniques: A survey,†Integration, vol. 81, pp. 280–299, Nov. 2021, doi: 10.1016/j.vlsi.2021.08.004.

R. Genuer, J.-M. Poggi, R. Genuer, and J.-M. Poggi, Random forests. Springer, 2020.

P. Probst, A.-L. Boulesteix, and B. Bischl, “Tunability: Importance of hyperparameters of machine learning algorithms,†Journal of Machine Learning Research, vol. 20, no. 53, pp. 1–32, 2019.




DOI: https://doi.org/10.30865/mib.v8i3.7761

Refbacks



Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
  • https://ppm-asesmen.com/event/
  • https://mylm.lifemedia.id/banner/
  • https://assessment.kadellabs.com/kadellabs/
  • https://simawa.uai.ac.id
  • https://sikoba.koni-kotabandung.or.id/css/konibandung/
  • https://smartgov.bulelengkab.go.id/smartgov/
  • https://dashboard.dss.unismuh.ac.id/storage/assets/
  • https://e-journal.sttii-samarinda.ac.id/journal/
  • Slot Gacor
  • https://danielhowardwriting.com/
  • https://intranet.sinarmasmsiglife.co.id/e-hrd/mahjong/
  • https://online.rsbaptiskdr.id/js/rsbaptiskdr/
  • https://satoglobalsolutions.com/
  • https://siakad.alqolam.ac.id/fonts/sgacor/
  • situs gacor
  • https://ibs.rshs.or.id/ibs-rs/
  • https://dewanarsitek.id/dewan/
  • Mahjong Ways 3
  • https://online.rsbaptiskdr.id/css/public/
  • http://siakad.stikesmuhbojonegoro.ac.id/img/scatter-hitam/
  • Slot Gacor Hari Ini
  • slotplus777
  • https://suburbannewsletter.com/
  • https://pastiwin777.uk/
  • Mbokslot
  • https://prosiding.stis.ac.id/seminar/
  • Slot Thailand
  • https://pastiwin777.cfd/
  • https://rsjdahm.id/SImarsa/
  • https://heylink.me/Mbokslot.com/
  • http://ppbbumn.inaport4.co.id/vendor/telescope/-/situs-gacor/
  • https://bahanajar.schoolmedia.id/storage/bahanajar/