Segmentasi Pelanggan Menggunakan Fuzzy C-Means dan FP-Growth Berdasarkan Model LRFM untuk Rekomendasi Produk

 (*)Astriana Rahmah Mail (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 M Afdal (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)

(*) Corresponding Author

Submitted: May 24, 2024; Published: July 26, 2024

Abstract

Bazmart Pelalawan is a part of the National Zakat Agency (BAZNAS) program in Pelalawan Regency, which has implemented strategies to retain customers. However, these strategies have not yet succeeded in fully understanding customer characteristics, resulting in a decline in customer trust and their willingness to shop again. Additionally, Bazmart lacks proper guidelines for offering products that meet customer needs. This research aims to enhance product recommendations by integrating LRFM analysis into data mining techniques. The parameters considered include customer LRFM values, customer segmentation, and products frequently purchased together over a year of transaction data. Fuzzy C-Means and FP-Growth algorithms were used for segmentation and association analysis. The segmentation results identified two customer clusters with a Davies-Bouldin Index (DBI) value of 0.628, indicating good cluster quality. In the association analysis, a minimum support (minsup) of 30% and a minimum confidence (mincof) of 70% were used, resulting in 8 rules for cluster 1 and 17 rules for cluster 2. From the two association pattern results, the highest rules were obtained, namely in Drinks and Snacks and Bread with a support value of 0.426 and a confidence value of 0.926 resulting in a value of 0.394. These rules provide insights that Bazmart Pelalawan can use to develop more effective and targeted direct marketing strategies for each customer cluster. Thus, this research is expected to help Bazmart Pelalawan better understand customer characteristics and improve customer loyalty through more targeted product recommendations.

Keywords


Customer Segmentation; FP-Growth; Fuzzy C-Means; LRFM; Product Recommendation

Full Text:

PDF


Article Metrics

Abstract view : 413 times
PDF - 302 times

References

B. Rizki, N. G. Ginasta, M. A. Tamrin, and A. Rahman, “Customer Loyality Segmentation on Point of Sale System Using Recency-Frequency-Monetary (RFM) and K-Means,” J. online Inform., pp. 130–136, 2020.

R. Siagian, P. S. P. Sirait, and A. Halima, “E-Commerce Customer Segmentation Using K-Means Algorithm and Length, Recency, Frequency, Monetary Model,” J. Informatics Telecommun. Eng., vol. 5, no. 1, pp. 21–30, 2021.

G. Hasan, C. Wijaya, M. Noviani, and Y. Yendiarti, “Penerapan Customer Relationship Management (CRM) pada UMKM Mie Pangsit Ayam Bangka Mr. Ong Batam,” Manag. Stud. Entrep. J., vol. 4, no. 3, pp. 2785–2795, 2023.

L. Waroka, S. Monalisa, D. Anjainah, and N. Arifin, “Implementasi Algoritma Fuzzy C-Means (Fcm) Dalam Pengklasterisasian Nilai Hidup Pelanggan Dengan Model Lrfm,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 6, no. 1, pp. 1–5, 2020.

S. Syofian, R. Sugiyanto, Y. Irvan, and S. Y. Irianto, “Implementasi Algoritma Frequent Pattern Growth, Collaborative Filtering Dan Eclat Untuk Rekomendasi Produk Pada PT. JOENOES IKAMULYA,” in Prosiding Seminar Nasional Darmajaya, 2023, pp. 191–207.

H. D. A. UNAN, “IMPLEMENTASI ALGORITMA FP-GROWTH UNTUK REKOMENDASI PRODUK DI TOKO LM MART,” Julia J. Ilmu Komput. An Nuur, vol. 4, no. 1, pp. 1–12, 2024.

T. A. Anggraini, A. Pranata, and D. Setiawan, “Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menganalisa Pola Penjualan Untuk Meningkatkan Pendapatan,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 3, no. 2, pp. 90–100, 2024.

Y. R. Amalia, “Penerapan Data Mining Untuk Prediksi Penjualan Produk Elektronik Terlaris Menggunakan Metode K-Nearest Neighbor (Studi Kasus: PT. Bintang Multi Sarana Palembang).” UIN RADEN FATAH PALEMBANG, 2018.

K. Annisa, B. S. Ginting, and M. A. Syari, “Penerapan Data Mining Pengelompokan Data Pengguna Air Bersih Berdasarkan Keluhannya Menggunakan Metode Clustering Pada PDAM Langkat,” Algoritm. J. Ilmu Komput. dan Inform., vol. 6, no. 1, 2022.

A. Z. Putri, M. Afdal, S. Monalisa, and I. Permana, “Penerapan Algoritma Fuzzy C-Means Pada Segmentasi Pelanggan B2B dengan Model LRFM,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 3, pp. 1423–1432, 2023.

Y. Husain, E. D. Oktaviyani, and S. Christina, “Analisis Perbandingan Algoritma Apriori, FP-Growth, Dan Eclat dalam Menemukan Pola Pembelian Konsumen,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 231–243, 2023.

S. M. Monalisa and D. A. Anjainah, “Analisis Rekomendasi Produk Berdasarkan Segmentasi Pelanggan Menggunakan Algoritma DBSCAN dan FP-Growth,” Techno. Com, vol. 21, no. 4, pp. 948–956, 2022.

S. F. Octavia, M. Mustakim, I. Permana, and S. Monalisa, “Penerapan Algoritma Association Rules Dalam Penentuan Pola Pembelian Berdasarkan Hasil Clustering,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 3, pp. 956–965, 2023.

M. R. AL, M. T. Sembiring, and R. G. R. Maulana, “Product Recommendations Using Market Basket Analysis with FP-Growth and Clustering Techniques”.

D. Birant, “Data mining using RFM analysis,” in Knowledge-oriented applications in data mining, IntechOpen, 2011.

M. Warsela, A. D. Wahyudi, and A. Sulistiyawati, “Penerapan Customer Relationship Management Untuk Mendukung Marketing Credit Executive (Studi Kasus: Pt Fif Group),” J. Teknol. Dan Sist. Inf., vol. 2, no. 2, pp. 78–87, 2021.

A. Febriani and S. A. Putri, “Segmentasi Konsumen Berdasarkan Model Recency, Frequency, Monetary dengan Metode K-Means,” JIEMS (Journal Ind. Eng. Manag. Syst., vol. 13, no. 2, 2020.

F. Marisa, S. S. S. Ahmad, Z. I. M. Yusof, F. Hunaini, and T. M. A. Aziz, “Segmentation model of customer lifetime value in small and medium enterprise (SMEs) using K-means clustering and LRFM model,” Int. J. Integr. Eng., vol. 11, no. 3, 2019.

U. D. Puspita and Y. Yundari, “SEGMENTASI CUSTOMER LIFETIME VALUE PADA MODEL LRFM MENGGUNAKAN METODE K-MEANS EUCLIDEAN DISTANC,” Bimaster Bul. Ilm. Mat. Stat. dan Ter., vol. 12, no. 5.

J. Han, J. Pei, and H. Tong, Data mining: concepts and techniques. Morgan kaufmann, 2022.

B. Molina-Coronado, U. Mori, A. Mendiburu, and J. Miguel-Alonso, “Survey of network intrusion detection methods from the perspective of the knowledge discovery in databases process,” IEEE Trans. Netw. Serv. Manag., vol. 17, no. 4, pp. 2451–2479, 2020.

S. Styawati and K. Mustofa, “A support vector machine-firefly algorithm for movie opinion data classification,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 3, pp. 219–230, 2019.

A. A. Aldino, D. Darwis, A. T. Prastowo, and C. Sujana, “Implementation of K-means algorithm for clustering corn planting feasibility area in south lampung regency,” in Journal of Physics: Conference Series, IOP Publishing, 2021, p. 12038.

R. Rusliyawati and A. Wantoro, “Model sistem pendukung keputusan menggunakan FIS Mamdani untuk penentuan tekanan udara ban,” J. Teknol. Dan Sist. Komput., vol. 9, no. 1, pp. 56–63, 2021.

D. Alita, “Multiclass SVM Algorithm for Sarcasm Text in Twitter,” JATISI (Jurnal Tek. Inform. Dan Sist. Informasi), vol. 8, no. 1, pp. 118–128, 2021.

R. A. Malik, S. Defit, and Y. Yuhandri, “Perbandingan Algoritma K-Means Clustering Dengan Fuzzy C-Means Dalam Mengukur Tingkat Kepuasan Terhadap Televisi Dakwah,” vol, vol. 3, pp. 10–21, 2018.

W. Gie and D. Jollyta, “Perbandingan Euclidean dan Manhattan Untuk Optimasi Cluster Menggunakan Davies Bouldin Index: Status Covid-19 Wilayah Riau,” in Prosiding Seminar Nasional Riset Information Science (SENARIS), 2020, pp. 187–191.

D. Jollyta, S. Efendi, M. Zarlis, and H. Mawengkang, “Optimasi Cluster Pada Data Stunting: Teknik Evaluasi Cluster Sum of Square Error dan Davies Bouldin Index,” in Prosiding Seminar Nasional Riset Information Science (SENARIS), 2019, pp. 918–926.

M. Alvin, A. Nazir, M. Fikry, and F. Syafria, “IMPLEMENTASI ALGORITMA FP-GROWTH UNTUK MENGETAHUI FAKTOR YANG BERPENGARUH TERHADAP KEMAMPUAN MEMBACA AL-QURAN SISWA,” J. RESTIKOM Ris. Tek. Inform. dan Komput., vol. 2, no. 2, pp. 66–78, 2020.

Y. P. Bunda, “Algoritma FP-Growth untuk Menganalisa Pola Pembelian Oleh-Oleh,” Riau J. Comput. Sci., vol. 6, no. 1, pp. 34–44, 2020.

A. M. Andika, N. Suarna, and R. D. Dana, “Analisa Dataset Asosiasi Penjualan Menggunakan Metode FP-Growth,” J. Teknol. Ilmu Komput., vol. 2, no. 1, pp. 80–88, 2023.

C.-H. Chee, J. Jaafar, I. A. Aziz, M. H. Hasan, and W. Yeoh, “Algorithms for frequent itemset mining: a literature review,” Artif. Intell. Rev., vol. 52, pp. 2603–2621, 2019.

L. K. Sihombing, T. Tugiono, and U. F. Sari, “Implementasi Data Mining Dalam Menganalisa Pola Penjualan Roti Menggunakan Algoritma Fp-Growth,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 3, pp. 228–238, 2022.

A. M. Hutabarat, D. Saripurna, and A. Azlan, “Implementasi Fp-Growth Dalam Menganalisa Penjualan Obat,” J. Cyber Tech, vol. 3, no. 1, pp. 163–175, 2020.

E. Alma’arif, E. Utami, and F. W. Wibowo, “Implementasi Algoritma Apriori Untuk Rekomendasi Produk Pada Toko Online,” Creat. Inf. Technol. J., vol. 7, no. 1, pp. 63–74, 2021.

A. R. Riszky and M. Sadikin, “Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan,” J. Teknol. dan Sist. Komput., vol. 7, no. 3, pp. 103–108, 2019.

S. Monalisa, “Segmentasi Perilaku Pembelian Pelanggan Berdasarkan Model RFM dengan Metode K-Means,” Query J. Inf. Syst., vol. 2, no. 1, 2018.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.