Analisis Perbandingan CNN dan Vision Transformer untuk Klasifikasi Biji Kopi Hasil Sangrai

 (*)M. Anjas Leonardi Mail (Universitas Mercu Buana Yogyakarta, Yogyakarta, Indonesia)
 Albert Yakobus Chandra (Universitas Mercu Buana Yogyakarta, Yogyakarta, Indonesia)

(*) Corresponding Author

Submitted: May 22, 2024; Published: July 26, 2024

Abstract

Coffee is a globally cherished beverage, popular among various segments of society, including in Indonesia. The coffee processing procedure plays a pivotal role in determining the taste and final quality of the beverage. One crucial stage in this process is selecting the maturity level of coffee beans after the roasting process. However, determining this maturity level often faces challenges, particularly in large-scale processing contexts. This research focuses on evaluating two main approaches in classifying the maturity level of roasted coffee beans: Convolutional Neural Network (CNN) and Vision Transformer (ViT). The main issue encountered is the lack of studies comparing the effectiveness of these two methods in the context of coffee bean classification. Therefore, this study aims to fill this knowledge gap and provide better insights into which method is more suitable for this purpose. In this study, two CNN models, namely Xception and InceptionV3, as well as one ViT model, ViT-B16, are utilized. The dataset includes images of roasted coffee beans, raw coffee beans, and non-coffee bean images, with image sizes of 224 x 224 pixels. A comparison analysis is conducted based on classification accuracy and the ability of each model to capture characteristic features in coffee bean images. The experimental results show that the ViT-B16 model outperforms both CNN models with an accuracy of 99.33%, while the Xception and InceptionV3 models achieve accuracies of 96.67% and 96.00%, respectively. ViT-B16 demonstrates better capability in capturing global features in images, while CNN is more effective in detecting local features. However, both approaches face some challenges, including computational requirements and training time. In conclusion, although both methods have their own advantages, ViT-B16 offers significant potential for more accurate and efficient classification systems for images of roasted coffee beans. This research provides a crucial contribution to the development of coffee bean classification technology, which can enhance efficiency and consistency in the coffee processing industry.

Keywords


Convolutional Neural Network; Vision Transformer; Image Classification; Coffee Beans; Machine Learning; Data Augmentation

Full Text:

PDF


Article Metrics

Abstract view : 451 times
PDF - 261 times

References

G. A. Arumsari, R. Surya, S. Irmasuryani, and W. Sapitri, “Analisis Proses Roasting pada Kopi,” J. Beta Kim., vol. 1, no. 2, pp. 98–101, 2021, [Online]. Available: http://ejurnal.undana.ac.id/index.php/jbkHalaman%7C98

H. S. Maharani and I. K. D. Nuryana, “Role Of Gray Level Co-Occurrence Matrix for Convolution Neural Network Transfer Learning in Coffee Bean Classification,” (Journal Informatics Comput. Sci., vol. 05, no. 1, pp. 1–6, 2023.

E. Riyanti, E. Silviana, and M. Santika, “Analisis Kandungan Kafein Pada Kopi Seduhan Warung Kopi Di Kota Banda Aceh,” Lantanida J., vol. 8, no. 1, p. 1, 2020, doi: 10.22373/lj.v8i1.5759.

M. A. Putri Adella Maharani, “IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK DALAM KLASIFIKASI JENIS KOPI TEMANGGUNG,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3030–3037, 2024.

H. A. Pratiwi, M. Cahyanti, and M. Lamsani, “Implementasi Deep Learning Flower Scanner Menggunakan Metode Convolutional Neural Network,” Sebatik, vol. 25, no. 1, pp. 124–130, 2021, doi: 10.46984/sebatik.v25i1.1297.

B. Yanto, B. -, J. -, and B. H. Hayadi, “Indentifikasi Pola Aksara Arab Melayu Dengan Jaringan Syaraf Tiruan Convolutional Neural Network (Cnn),” JSAI (Journal Sci. Appl. Informatics), vol. 3, no. 3, pp. 106–114, 2020, doi: 10.36085/jsai.v3i3.1151.

V. M. P. Salawazo, D. P. J. Gea, R. F. Gea, and F. Azmi, “Implementasi Metode Convolutional Neural Network ( CNN ) Pada Peneganalan Objek Video CCTV,” J. Mantik Penusa, vol. 3, no. 1, pp. 74–79, 2019.

A. Dosovitskiy et al., “an Image Is Worth 16X16 Words: Transformers for Image Recognition At Scale,” ICLR 2021 - 9th Int. Conf. Learn. Represent., 2021.

J. A. Figo, N. Yudistira, and A. W. Widodo, “Deteksi Covid-19 dari Citra X-ray menggunakan Vision Transformer,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 1116–1125, 2023, [Online]. Available: http://j-ptiik.ub.ac.id

A. Pangestu, B. Purnama, F. Informatika, U. Telkom, and P. Korespondensi, “Vision transformer untuk klasifikasi kematangan pisang,” vol. 11, no. 1, pp. 75–84, 2024, doi: 10.25126/jtiik.20241117389.

H. A. Rabbani, M. A. Rahman, and B. Rahayudi, “Perbandingan Ruang Warna RGB dan HSV dalam Klasifikasi Kematangan Biji Kopi,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 6, pp. 2243–2248, 2021, [Online]. Available: http://j-ptiik.ub.ac.id

I. Alfiantama et al., “Klasifikasi Tingkat Roasting Biji Kopi Dengan Metode CNN,” vol. 3, pp. 285–290, 2024.

M. Murinto, M. Rosyda, and M. Melany, “Klasifikasi Jenis Biji Kopi Menggunkan Convolutional Neural Network dan Transfer Learning pada Model VGG16 dan MobileNetV2,” JRST (Jurnal Ris. Sains dan Teknol., vol. 7, no. 2, p. 183, 2023, doi: 10.30595/jrst.v7i2.16788.

Y. Hatur and A. Sabri, “Transfer Learning Model Pralatih MobileNetV2 dan DenseNet121 untuk Klasi kasi Tanaman Rempah Pendahuluan Metode Penelitian,” vol. 23, pp. 67–74, 2024.

M. Malik Ibrahim, R. Rahmadewi, and L. Nurpulaela, “Pendeteksian Nominal Uang Pada Gambar Menggunakan Convolutional Neural Network: Integrasi Metode Pra-Pemrosesan Citra Dan Klasifikasi Berbasis Cnn,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1394–1400, 2023, doi: 10.36040/jati.v7i2.6863.

R. Kurniawan, P. B. Wintoro, Y. Mulyani, and M. Komarudin, “Implementasi Arsitektur Xception Pada Model Machine Learning Klasifikasi Sampah Anorganik,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 2, pp. 233–236, 2023, doi: 10.23960/jitet.v11i2.3034.

U. UNGKAWA and G. AL HAKIM, “Klasifikasi Warna pada Kematangan Buah Kopi Kuning menggunakan Metode CNN Inception V3,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 11, no. 3, p. 731, 2023, doi: 10.26760/elkomika.v11i3.731.

Y. Arti and A. M. Arymurthy, “Face Spoofing Detection using Inception-v3 on RGB Modal and Depth Modal,” J. Ilmu Komput. dan Inf., vol. 16, no. 1, pp. 47–57, 2023, doi: 10.21609/jiki.v16i1.1100.

M. Khoiruddin, A. Junaidi, and W. A. Saputra, “Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network,” J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 2, no. 1, pp. 37–45, 2022, doi: 10.20895/dinda.v2i1.341.

M. Sholawati, K. Auliasari, and F. Ariwibisono, “Pengembangan Aplikasi Pengenalan Bahasa Isyarat Abjad Sibi Menggunakan Metode Convolutional Neural Network (Cnn),” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 1, pp. 134–144, 2022, doi: 10.36040/jati.v6i1.4507.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.