Penerapan Artificial Neural Network Untuk Memprediksi Error dalam Perancangan Aplikasi Monitoring Tetes Cairan Infus
Abstract
Decision-making in error prediction during the design process of infusion drip monitoring applications plays a crucial role. Designing this application is necessary because manual monitoring by medical staff is prone to errors and inaccuracies. Therefore, the need for accurate predictions in both planning and error management must be further investigated. This research discusses the benefits of the Artificial Neural Network (ANN) methodology in addressing error values in infusion drip monitoring applications during the design process. ANN is chosen for its ability to handle data complexity and non-linear patterns in infusion drip rates. Errors in infusion dosage can be fatal, ranging from patient instability to severe complications. Designing infusion drip monitoring applications automates the process and ensures accuracy, reducing the workload of medical staff and enhancing patient safety. This application also allows for more consistent and real-time monitoring, enabling quicker medical intervention when issues arise. The ANN methodology used includes both forwardpropagation and backpropagation, employing a binary sigmoid activation function with a learning rate of 0.03 and a maximum epoch setting of up to 1000. The research results indicate that the model-building procedure consists of several stages: (1) Determining input based on infusion drip rate readings. (2) Splitting the data into training and testing datasets. (3) Normalizing the data. (4) Building the forwardpropagation and backpropagation algorithm by determining the number of hidden layers, optimal input, and model weights. (5) Denormalizing the data. (6) Testing the model's accuracy. The ANN simulation revealed the best network structure using a 3-40-1 configuration (3 input variables, 40 hidden layers, and 1 output). The results achieved an average error prediction accuracy of 98.6%.
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 152 timesPDF - 123 times
References
I. Sucipta, J. W. Simatupang, C. Kaswandi, and I. Purnama, “Prototipe Pemantauan Tetes Cairan Infus Berbasis IoT Terkoneksi Perangkat Android,” Jurnal Teknologi Elektro, vol. 12, no. 3, p. 113, Oct. 2021, doi: 10.22441/jte.2021.v12i3.003.
Intan Permata and Esther Sorta Mauli Nababan, “Application Of Game Theory In Determining Optimum Marketing Strategy In Marketplace,” JURNAL RISET RUMPUN MATEMATIKA DAN ILMU PENGETAHUAN ALAM, vol. 2, no. 2, pp. 65–71, Jul. 2023, doi: 10.55606/jurrimipa.v2i2.1336.
A. Aminulloh, S. Adinugroho, and A. A. Supianto, “Implementasi Metode Backpropagation Untuk Peramalan Luas Area Terbakar di Hutan dengan Inisialisasi Bobot Nguyen-Widrow,” 2019. [Online]. Available: http://j-ptiik.ub.ac.id
N. Giaquinto, M. Scarpetta, M. Spadavecchia, and G. Andria, “Deep learning-based computer vision for real-time intravenous drip infusion monitoring,” IEEE Sens J, vol. 21, no. 13, pp. 14148–14154, Jul. 2021, doi: 10.1109/JSEN.2020.3039009.
Y. J. Hwang, G. H. Kim, M. J. Kim, and K. W. Nam, “Deep learning-based monitoring technique for real-time intravenous medication bag status,” Biomed Eng Lett, vol. 13, no. 4, pp. 705–714, Nov. 2023, doi: 10.1007/s13534-023-00292-w.
D. NATALIANA, F. HADIATNA, and Y. MAULIDA, “Sistem Monitoring Infus dengan Human Machine Interface secara Wireless,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 10, no. 2, p. 470, Apr. 2022, doi: 10.26760/elkomika.v10i2.470.
C. G. Babu, J. R. D. Kumar, V. R. Balaji, K. Priyadharsini, and S. P. Karthi, “Performance Analysis of Smart Intravenous Infusion Systems using Machine Learning,” in 2021 Smart Technologies, Communication and Robotics (STCR), 2021, pp. 1–7. doi: 10.1109/STCR51658.2021.9588997.
M. V. Caya, M. U. Cosindad, N. I. Marcelo, J. N. M. Santos, and J. L. Torres, “Design and Implementation of an Intravenous Infusion Control and Monitoring System,” in 2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia), 2019, pp. 68–72. doi: 10.1109/ICCE-Asia46551.2019.8941599.
M. Rakadytia Akbar and A. Stefanie, “Sistem Monitoring Infus Menggunakan HX 711 Untuk Membatu Perawat,” JIMPS: Jurnal Ilmiah Mahasiswa Pendidikan Sejarah, vol. 8, no. 3, 2020, doi: 10.24815/jimps.v8i3.25156.
H. Ajiyanti and La Ode Abdul Rahman, “Internet of Things for Monitoring Infusion Fluids in Intravenous Chemotherapy Patients: Literature Review,” Indonesian Journal of Sport Management and Physical Education, vol. 1, no. 1, pp. 49–58, Dec. 2022, doi: 10.55927/ijsmpe.v1i1.2212.
E. Engström and P. Strimling, “Deep learning diffusion by infusion into preexisting technologies – Implications for users and society at large,” Technol Soc, vol. 63, p. 101396, 2020, doi: https://doi.org/10.1016/j.techsoc.2020.101396.
M. R. Rosdi and A. Huong, “A Smart Infusion Pump System for Remote Management and Monitoring of Intravenous (IV) Drips,” in 2021 IEEE 11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 2021, pp. 285–288. doi: 10.1109/ISCAIE51753.2021.9431790.
F.-G. Chen, J.-Y. Wang, S. Chen, S.-C. Tu, and K.-Y. Chen, “A Hang-and-Play Intravenous Infusion Monitoring System,” in 2015 3rd International Conference on Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence, 2015, pp. 278–281. doi: 10.1109/ACIT-CSI.2015.57.
M. U. Sapatnekar and P. M. Mainkar, “Design and Development of IOT Controlled Intravenous Infusion Device,” in 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2022, pp. 1–7. doi: 10.1109/ICCCNT54827.2022.9984327.
J. Silva, E. Jeong, C. Lam, G. C. Valentine, and D. M. Wilson, “A Neonatal Intravenous Monitor Prototype,” IEEE Sens Lett, vol. 6, no. 11, pp. 1–4, 2022, doi: 10.1109/LSENS.2022.3218770.
N. Giaquinto, M. Scarpetta, M. A. Ragolia, and P. Pappalardi, “Real-time drip infusion monitoring through a computer vision system,” in 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2020, pp. 1–5. doi: 10.1109/MeMeA49120.2020.9137359.
C. G. Babu, J. R. D. Kumar, V. R. Balaji, K. Priyadharsini, and S. P. Karthi, “Performance Analysis of Smart Intravenous Infusion Systems using Machine Learning,” in 2021 Smart Technologies, Communication and Robotics (STCR), 2021, pp. 1–7. doi: 10.1109/STCR51658.2021.9588997.
W. J. Yun, M. Shin, D. Mohaisen, K. Lee, and J. Kim, “Hierarchical Deep Reinforcement Learning-Based Propofol Infusion Assistant Framework in Anesthesia,” IEEE Trans Neural Netw Learn Syst, vol. 35, no. 2, pp. 2510–2521, 2024, doi: 10.1109/TNNLS.2022.3190379.
N. Giaquinto, M. Scarpetta, M. Spadavecchia, and G. Andria, “Deep Learning-Based Computer Vision for Real-Time Intravenous Drip Infusion Monitoring,” IEEE Sens J, vol. 21, no. 13, pp. 14148–14154, 2021, doi: 10.1109/JSEN.2020.3039009.
E. Estiri and H. Mirinejad, “Precision Dosing in Critical Care: Application of Machine Learning in Fluid Therapy,” in 2023 IEEE International Conference on Digital Health (ICDH), 2023, pp. 348–352. doi: 10.1109/ICDH60066.2023.00058.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA
This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.