Analisis Klasifikasi Komoditas Harga Pangan Menggunakan Artificial Neural Network pada Kualitas Beras Pulau Jawa

 (*)Fruita Cancer Lifera Mail (Universitas Islam Indonesia, Yogayakarta, Indonesia)
 Atina Ahdika (Universitas Islam Indonesia, Yogayakarta, Indonesia)

(*) Corresponding Author

Submitted: May 17, 2024; Published: July 26, 2024

Abstract

Rice is a highly important food commodity that significantly influences the welfare of the Indonesian population, with approximately 98% of the Indonesian population relying on it as their main food source. There are several qualities of rice such as low-quality rice, medium-quality rice, and super-quality rice. The differences in rice quality types are usually influenced by several factors, including the level of processing, nutrient content, and quality level. Thus, in general, many consumers are unable to differentiate rice quality based on its physical appearance when purchasing rice. Instead, they tend to assess rice quality solely based on its price aspect. Therefore, this study classifies rice quality by focusing on the price variable as the main reference. Artificial Neural Network (ANN) method is used to classify rice quality based on price. ANN is a non-linear technique commonly used for model classification. ANN method is one of the famous data mining prediction models known for its accuracy in classification. By using the ANN method, it is found that the best proportion is using an 85% training and 15% testing proportion, and obtaining an accuracy value of 70% which can be considered quite good. The ANN method shows that the ANN model can learn significant patterns from the given data.

Keywords


Artificial Neural Network; Clasification; Quality of Rice; Java Island

Full Text:

PDF


Article Metrics

Abstract view : 119 times
PDF - 109 times

References

L. A. Putri and Suwanda, “Implementasi Metode Artificial Neural Network (ANN) Algoritma Backpropagation untuk Klasifikasi Kualitas Udara di Provinsi DKI Jakarta Tahun 2021,” Bandung Conf. Ser. Stat., 2021.

N. Moham, F. A. Dwiyanto, H. S. Pakpaham, Islamiyah, and H. J. Setyadi, “Pengenalan Karakter Tulisan Menggunakan Metode Backpropagation Neural Network,” Sains, Apl. Komputasi dan Teknol. Inf., vol. 1, 2019.

M. R. N. Alam and A. K. Mutaqin, “Pemodelan Distribusi Poisson-Sujatha pada Data Frekuensi Klaim Asuransi Kendaraan Bermotor di Indonesia,” J. Ris. Stat., pp. 71–78, 2023.

Simbolon. Imelda Asih Rohani, F. Yatussa’ada, and A. Wanto, “Penerapan Algoritma Backpropagation dalam Memprediksi Persentase Penduduk Buta Huruf di Indonesia,” J. Inform. UPGRIS, vol. 4, 2018.

W. A. Saputro, “Faktor-Faktor Yang Mempengaruhi Ketahanan Pangan Rumah Tangga Petani Di Kabupaten Klaten,” J. Agribisnis Sumatera Utara, vol. 13, 2020.

P. D. Wijayati, Harianto, and A. Suryana, “Permintaan Pangan Sumber Karbohidrat di Indonesia,” Anal. Kebijak. Pertan., vol. 17, 2019.

M. P. Hutagaol and R. Sinaga, “PENGARUH PENDAPATAN DAN HARGA PANGAN TERHADAP DIVERSIFIKASI PANGAN DI PULAU JAWA,” Sci. J. Reflect., vol. 5, 2022.

K. Foster, “What is difference between short medium and long grain rice?” 2022.

M. . Anwar, “Beda Beras Premium dan Medium,” 2021.

Anien Novella Mahdi Ayunita, “Identifikasi jenis dan mutu beras(oryza sativa) berdasarkan analisis warna dan bentuk menggunakan teknologi pengolahan citra dan jaringan saraf tiruan,” 2018.

H. D. Bhakti, “Aplikasi Artificial Neural Network (ANN) untuk Memprediksi Masa Studi Mahasiswa Program Studi Teknik Informatika Universitas Muhammadiyah Gresik,” J. Eksplora Inform., 2019.

R. S. Saputra, “PENERAPAN ARTIFICIAL NEURAL NETWORK (ANN) DENGAN ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM,” 2018.

W. Sumelka, “Fractional calculus for continuum mechanics - Anisotropic non-locality,” 2018, doi: 10.1515/bpasts-2016-0041.

A. S. Kurniawansyah, “Implementasi metode Artificial Neural Network dalam memprediksi hasil ujian kompetensi kebidanan,” J. Pseudocode, vol. V Nomor 1, p. 8, 2018.

D. Yuliana, Purwanto, and C. Supriyanto, “Klasifikasi Teks Pengaduan Masyarakat DenganMenggunakan Algoritma Neural Network,” J. KomTekInfo, vol. 5, 2019.

I. Gunawan, “Optimasi Model Artificial Neural Network Untuk Klasifikasi Paket Jaringan,” SIMETRIS, vol. 14, 2020.

J. R. Simanungkalit, Haviluddin, H. S. Pakpahan, N. Puspitasari, and M. Wati, “Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet,” Ilk. J. Ilm., vol. 12, p. 7, 2020.

M. M. Trisna Yuniarti, Irfan Rusmar, Tengku Rachmi Hidayani, “Penggunaan Artificial Neural Network (ANN) untuk memodelkan volume ekspor crude palm oil(CPO) di Indonesia,” Ready Star, p. 9, 2022.

F. Fathurrahman, M. M. Santoni, and A. Muliawati, “PENERAPAN ARTIFICIAL NEURAL NETWORK UNTUK KLASIFIKASI CITRA TEKS DALAM PENERJEMAHAN BAHASA DAERAH,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., 2020.

H. D. Bhakti, “Aplikasi ANN untuk memprediksi masa studi mahasiswa program studi teknik informatika universitas muhammadiyah gresik,” J. Eksplora Inform., vol. 9il.234, p. 8, 2019.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.