Analisis Sentimen Calon Presiden 2024 di Media Sosial X Menggunakan Naive Bayes dan SMOTE

 Muhamad Hafidz Ardian Sunata (Universitas Muhammadiyah Prof. Dr. Hamka, DKI Jakarta, Indonesia)
 (*)Faldy Irwiensyah Mail (Universitas Muhammadiyah Prof. Dr. Hamka, DKI Jakarta, Indonesia)
 Firman Noor Hasan (Universitas Muhammadiyah Prof. Dr. Hamka, DKI Jakarta, Indonesia)

(*) Corresponding Author

Submitted: May 14, 2024; Published: July 26, 2024

Abstract

In the era of digital advancement, the utilization of social media has surged, enabling individuals to express their viewpoints openly. This research underscores the utilization of social media platform X as the primary avenue for users to express their opinions, particularly on political matters, notably within the framework of the presidential election. Sentiment analysis techniques, specifically employing the Naïve Bayes algorithm and the Synthetic Minority Oversampling (SMOTE) method, have been the central focus of inquiry to infer people's inclinations toward presidential candidates. Despite numerous antecedent studies, deficiencies persist in terms of precision and data imbalance. This study endeavors to enhance the efficacy of sentiment analysis by integrating the Naïve Bayes approach with SMOTE. By scrutinizing tweets on social media X spanning from December 12, 2023, to March 31, 2024, the data is categorized into positive and negative sentiments. The findings reveal that employing SMOTE bolstered accuracy to 88% for the Ganjar-Mahfud dataset, whereas accuracy without SMOTE languished at approximately 69% for the Anies-Imin dataset. Out of 1589 tweets conveying positive sentiments, approximately 27.7% were directed towards Anies-Imin, 28.7% towards Prabowo-Gibran, and 43.5% towards Ganjar-Mahfud. The preponderance of negative sentiments was aimed at Anies-Imin (41.5%) and Prabowo-Gibran (40.8%).

Keywords


Sentiment Analysis; Presidential Candidates; Naive Bayes; SMOTE; Social Media X

Full Text:

PDF


Article Metrics

Abstract view : 208 times
PDF - 138 times

References

T. Tranggono et al., “Peran Media Sosial Sebagai Wadah Aspirasi Masyarakat,” Bur. J. Indones. J. Law Soc. Gov., vol. 3, no. 2, pp. 2155–2164, 2023, doi: https://doi.org/10.53363/bureau.v3i2.314.

Y. W. S. P. et Al., Pengantar Aplikasi Mobile. CV.Haura Utama, 2023.

K. Arifin and S. I. Al-Idrus, “Klasifikasi Emosi Pengguna Twitter Terhadap Bakal Calon Presiden Pada Pemilu 2024 Menggunakan Algoritma Naïve Bayes,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 23, no. 1, p. 37, 2024, doi: 10.53513/jis.v23i1.9558.

Alfandi Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” Zo. J. Sist. Inf., vol. 5, no. 1, pp. 59–70, 2023, doi: 10.31849/zn.v5i1.12856.

N. Fitriani and E. Fitrianti, “Tindak Tutur Asertif dalam Acara Debat Perdana,” vol. 3, no. 3, pp. 120–126, 2024, doi: https://doi.org/10.36057/jips.v7i3.644.

M. Minardi, R. Lasepa, S. Riyadi, S. Ramadhan, and D. D. Saputra, “Sentiment Analysis Terhadap Perspektif Warganet Atas Tragedi Kanjuruhan Malang di Twitter Menggunakan Naïve Bayes Classifier,” J. Inform., vol. 10, no. 1, pp. 45–53, 2023, doi: 10.31294/inf.v10i1.14546.

A. R. Abdillah and F. N. Hasan, “Analisis Sentimen Terhadap Kandidat Calon Presiden Berdasarkan Tweets Di Sosial Media Menggunakan Naive Bayes Classifier,” Smatika J., vol. 13, no. 01, pp. 117–130, 2023, doi: 10.32664/smatika.v13i01.750.

C. Nas, “Data Mining Prediksi Minat Calon Mahasiswa Memilih Perguruan Tinggi Menggunakan Algoritma C4.5,” J. Manaj. Inform., vol. 11, no. 2, pp. 131–145, 2021, doi: 10.34010/jamika.v11i2.5506.

K. F. Irnanda, A. P. Windarto, and I. S. Damanik, “Optimasi Particle Swarm Optimization Pada Peningkatan Prediksi dengan Metode Backpropagation Menggunakan Software RapidMiner,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 1, p. 122, 2022, doi: 10.30865/jurikom.v9i1.3836.

D. Ardiansyah, “Algoritma C4.5 Untuk Klasifikasi Calon Peserta Lomba Cerdas Cermat Siswa Smp Dengan Menggunakan Aplikasi Rapid Miner,” J. Inkofar, vol. 1, no. 2, pp. 5–12, 2019, doi: 10.46846/jurnalinkofar.v1i2.29.

M. R. Fais Sya’ bani, U. Enri, and T. N. Padilah, “Analisis Sentimen Terhadap Bakal Calon Presiden 2024 Dengan Algoritme Naïve Bayes,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, p. 265, 2022, doi: 10.30865/jurikom.v9i2.3989.

A. P. Nardilasari, A. L. Hananto, S. S. Hilabi, T. Tukino, and B. Priyatna, “Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 8, no. 1, p. 11, 2023, doi: 10.31328/jointecs.v8i1.4265.

S. Chohan, A. Nugroho, A. M. B. Aji, and W. Gata, “Analisis Sentimen Pengguna Aplikasi Duolingo Menggunakan Metode Naïve Bayes dan Synthetic Minority Over Sampling Technique,” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 139–144, 2020, doi: 10.31294/p.v22i2.8251.

A. Andreyestha and Q. N. Azizah, “Analisa Sentimen Kicauan Twitter Tokopedia Dengan Optimalisasi Data Tidak Seimbang Menggunakan Algoritma SMOTE,” Infotek J. Inform. dan Teknol., vol. 5, no. 1, pp. 108–116, 2022, doi: 10.29408/jit.v5i1.4581.

Y. A. Singgalen, “Social Network Analysis and Sentiment Classification of Extended Reality Product Content,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 4, pp. 2197–2208, 2024, doi: 10.30865/klik.v4i4.1710.

H. Setiawan and I. Zufria, “Analisis Sentimen Pembatalan Indonesia Sebagai Tuan Rumah Piala Dunia FIFA U-20 Menggunakan Naïve Bayes,” vol. 7, no. 3, pp. 1003–1012, 2023, doi: 10.30865/mib.v7i3.6144.

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835.

Z. Firmansyah and N. F. Puspitasari, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Berdasarkan Opini Pada Twitter MenggunakFirmansyah, Z., & Puspitasari, N. F. (2021). Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Berdasarkan Opini Pada Twitter Menggunakan Algoritma Nai,” J. Tek. Inform., vol. 14, no. 2, pp. 171–178, 2021, [Online]. Available: https://doi.org/10.15408/jti.v14i2.24024.

O. Manullang, C. Prianto, and N. H. Harani, “Analisis Sentimen Untuk Memprediksi Hasil Calon Pemilu Presiden Menggunakan Lexicon Based Dan Random Forest,” J. Ilm. Inform., vol. 11, no. 02, pp. 159–169, 2023, doi: 10.33884/jif.v11i02.7987.

H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, 2021, doi: 10.34148/teknika.v10i1.311.

J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1120–1126, 2021, doi: 10.29207/resti.v5i6.3588.

N. Sulistiyowati and M. Jajuli, “Integrasi Naive Bayes Dengan Teknik Sampling Smote Untuk Menangani Data Tidak Seimbang,” Nuansa Inform., vol. 14, no. 1, p. 34, 2020, doi: 10.25134/nuansa.v14i1.2411.

L. Qadrini, H. Hikmah, and M. Megasari, “Oversampling, Undersampling, Smote SVM dan Random Forest pada Klasifikasi Penerima Bidikmisi Sejawa Timur Tahun 2017,” J. Comput. Syst. Informatics, vol. 3, no. 4, pp. 386–391, 2022, doi: 10.47065/josyc.v3i4.2154.

Hermanto, A. Y. Kuntoro, T. Asra, E. B. Pratama, L. Effendi, and R. Ocanitra, “Gojek and Grab User Sentiment Analysis on Google Play Using Naive Bayes Algorithm and Support Vector Machine Based Smote Technique,” J. Phys. Conf. Ser., vol. 1641, no. 1, 2020, doi: 10.1088/1742-6596/1641/1/012102.

R. Puspita and A. Widodo, “Analisis Sentimen terhadap Layanan Indihome di Twitter dengan Metode Machine Learning,” J. Inform. Univ. Pamulang, vol. 6, no. 4, pp. 759–766, 2021, doi: 10.32493/informatika.v6i4.13247.

R. Yunita and M. Kamayani, “Perbandingan Algoritma SVM Dan Naïve Bayes Pada Analisis Sentimen Penghapusan Kewajiban Skripsi,” Indones. J. Comput. Sci., vol. 12, no. 5, pp. 2879–2890, 2023, doi: 10.33022/ijcs.v12i5.3415.

M. A. Saddam, E. Kurniawan D, and I. Indra, “Analisis Sentimen Fenomena PHK Massal Menggunakan Naive Bayes dan Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 226–233, 2023, doi: 10.30591/jpit.v8i3.4884.

M. G. Pradana, “Penggunaan Fitur Wordcloud dan Document Term Matrix dalam Text Mining,” J. Ilm. Inform., vol. 8, no. 1, pp. 38–43, 2020, doi: 10.33884/jif.v8i01.1838.

M. R. Amly, Y. Yusra, and M. Fikry, “Penerapan Metode Naïve Bayes Classifier Pada Klasifikasi Sentimen Terhadap Anies Baswedan Sebagai Bakal Calon Presiden 2024,” J. Sist. Komput. dan Inform., vol. 4, no. 4, p. 621, 2023, doi: 10.30865/json.v4i4.6214.

R. Wati, S. Ernawati, and H. Rachmi, “Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH,” J. Manaj. Inform., vol. 13, no. 1, pp. 84–93, 2023, doi: 10.34010/jamika.v13i1.9424.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.