Sentiment Analysis on TikTok App using Long Short-Term Memory (LSTM) with Stochastic Gradient Descent (SGD) Optimization
Abstract
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 201 timesPDF - 122 times
References
M. Isnan, G. N. Elwirehardja, and B. Pardamean, “Sentiment Analysis for TikTok Review Using VADER Sentiment and SVM Model,” Procedia Comput. Sci., vol. 227, pp. 168–175, 2023, doi: 10.1016/j.procs.2023.10.514.
R. N. Aufa, S. S. Prasetiyowati, and Y. Sibaroni, “The Effect of Feature Weighting on Sentiment Analysis TikTok Application Using The RNN Classification,” Build. Informatics, Technol. Sci., vol. 5, no. 1, pp. 345–353, 2023, doi: 10.47065/bits.v5i1.3597.
K. Dashtipour, M. Gogate, A. Adeel, H. Larijani, and A. Hussain, “Sentiment analysis of persian movie reviews using deep learning,” Entropy, vol. 23, no. 5, pp. 1–16, 2021, doi: 10.3390/e23050596.
M. Sivakumar and S. R. Uyyala, “Aspect-based sentiment analysis of mobile phone reviews using LSTM and fuzzy logic,” Int. J. Data Sci. Anal., vol. 12, no. 4, pp. 355–367, 2021, doi: 10.1007/s41060-021-00277-x.
R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The impact of features extraction on the sentiment analysis,” Procedia Comput. Sci., vol. 152, pp. 341–348, 2019, doi: 10.1016/j.procs.2019.05.008.
M. Tubishat, N. Idris, and M. Abushariah, “Explicit aspects extraction in sentiment analysis using optimal rules combination,” Futur. Gener. Comput. Syst., vol. 114, pp. 448–480, 2021, doi: 10.1016/j.future.2020.08.019.
D. Antonakaki, P. Fragopoulou, and S. Ioannidis, “A survey of Twitter research: Data model, graph structure, sentiment analysis and attacks,” Expert Syst. Appl., vol. 164, no. February 2020, p. 114006, 2021, doi: 10.1016/j.eswa.2020.114006.
D. Sharma, M. Sabharwal, V. Goyal, and M. Vij, Sentiment analysis techniques for social media data: A review, vol. 1045. Springer Singapore, 2020.
K. Machová, M. Mikula, X. Gao, and M. Mach, “Lexicon-based sentiment analysis using particle swarm optimization,” Electron., vol. 9, no. 8, pp. 1–22, 2020, doi: 10.3390/electronics9081317.
M. Mujahid et al., “Sentiment analysis and topic modeling on tweets about online education during covid-19,” Appl. Sci., vol. 11, no. 18, 2021, doi: 10.3390/app11188438.
R. Srivastava, P. K. Bharti, and P. Verma, “Comparative Analysis of Lexicon and Machine Learning Approach for Sentiment Analysis,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 3, pp. 71–77, 2022, doi: 10.14569/IJACSA.2022.0130312.
A. Feizollah, S. Ainin, N. B. Anuar, N. A. B. Abdullah, and M. Hazim, “Halal Products on Twitter: Data Extraction and Sentiment Analysis Using Stack of Deep Learning Algorithms,” IEEE Access, vol. 7, pp. 83354–83362, 2019, doi: 10.1109/ACCESS.2019.2923275.
N. Aslam, F. Rustam, E. Lee, P. B. Washington, and I. Ashraf, “Sentiment Analysis and Emotion Detection on Cryptocurrency Related Tweets Using Ensemble LSTM-GRU Model,” IEEE Access, vol. 10, pp. 39313–39324, 2022, doi: 10.1109/ACCESS.2022.3165621.
U. Naqvi, A. Majid, and S. A. Abbas, “UTSA: Urdu Text Sentiment Analysis Using Deep Learning Methods,” IEEE Access, vol. 9, pp. 114085–114094, 2021, doi: 10.1109/ACCESS.2021.3104308.
P. F. Muhammad, R. Kusumaningrum, and A. Wibowo, “Sentiment Analysis Using Word2vec and Long Short-Term Memory (LSTM) for Indonesian Hotel Reviews,” Procedia Comput. Sci., vol. 179, no. 2020, pp. 728–735, 2021, doi: 10.1016/j.procs.2021.01.061.
S. Tam, R. Ben Said, and Ö. Tanriöver, “A ConvBiLSTM Deep Learning Model-Based Approach for Twitter Sentiment Classification,” IEEE Access, vol. 9, pp. 41283–41293, 2021, doi: 10.1109/ACCESS.2021.3064830.
D. Sunitha, R. K. Patra, N. V. Babu, A. Suresh, and S. C. Gupta, “Twitter sentiment analysis using ensemble based deep learning model towards COVID-19 in India and European countries,” Pattern Recognit. Lett., vol. 158, pp. 164–170, 2022, doi: 10.1016/j.patrec.2022.04.027.
W. Wang, L. Guo, and Y. J. Wu, “The merits of a sentiment analysis of antecedent comments for the prediction of online fundraising outcomes,” Technol. Forecast. Soc. Change, vol. 174, no. November 2020, p. 121070, 2022, doi: 10.1016/j.techfore.2021.121070.
I. N. Khasanah, “Sentiment Classification Using fastText Embedding and Deep Learning Model,” Procedia CIRP, vol. 189, pp. 343–350, 2021, doi: 10.1016/j.procs.2021.05.103.
T. T. Mengistie and D. Kumar, “Deep Learning Based Sentiment Analysis on COVID-19 Public Reviews,” 3rd Int. Conf. Artif. Intell. Inf. Commun. ICAIIC 2021, pp. 444–449, 2021, doi: 10.1109/ICAIIC51459.2021.9415191.
Z. Lin, L. Wang, X. Cui, and Y. Gu, “Fast Sentiment Analysis Algorithm Based on Double Model Fusion,” Comput. Syst. Sci. Eng., vol. 36, no. 1, pp. 175–188, 2021, doi: 10.32604/csse.2021.014260.
K. P. Vidyashree and A. B. Rajendra, “An Improvised Sentiment Analysis Model on Twitter Data Using Stochastic Gradient Descent (SGD) Optimization Algorithm in Stochastic Gate Neural Network (SGNN),” SN Comput. Sci., vol. 4, no. 2, pp. 1–11, 2023, doi: 10.1007/s42979-022-01607-x.
A. Al-Hashedi et al., “Ensemble Classifiers for Arabic Sentiment Analysis of Social Network (Twitter Data) towards COVID-19-Related Conspiracy Theories,” Appl. Comput. Intell. Soft Comput., vol. 2022, 2022, doi: 10.1155/2022/6614730.
T. Hai et al., “Comparison of the efficacy of particle swarm optimization and stochastic gradient descent algorithms on multi-layer perceptron model to estimate longitudinal dispersion coefficients in natural streams,” Eng. Appl. Comput. Fluid Mech., vol. 16, no. 1, pp. 2206–2220, 2022, doi: 10.1080/19942060.2022.2141896.
P. H. Gunawan, T. D. Alhafidh, and B. A. Wahyudi, “The Sentiment Analysis of Spider-Man: No Way Home Film Based on IMDb Reviews,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 177–182, 2022, doi: 10.29207/resti.v6i1.3851.
Sartini, Subiyanto, and M. M. F. Alim, “A sentiment analysis study for twitter using the various model of convolutional neural network,” J. Phys. Conf. Ser., vol. 1918, no. 4, 2021, doi: 10.1088/1742-6596/1918/4/042136.
M. Umer, I. Ashraf, A. Mehmood, S. Kumari, S. Ullah, and G. Sang Choi, “Sentiment analysis of tweets using a unified convolutional neural network-long short-term memory network model,” Comput. Intell., vol. 37, no. 1, pp. 409–434, 2021, doi: 10.1111/coin.12415.
V. Dwi Antonio, S. Efendi, and H. Mawengkang, “Sentiment analysis for covid-19 in Indonesia on Twitter with TF-IDF featured extraction and stochastic gradient descent,” Int. J. Nonlinear Anal. Appl, vol. 13, no. 1, pp. 2008–6822, 2022, [Online]. Available: http://dx.doi.org/10.22075/ijnaa.2021.5735.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA
This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.