Analisis Performa Akurasi Klasifikasi Citra Jenis Sayur Salada Menggunakan Arsitektur VGG16, Xception dan NasNetMobile
DOI:
https://doi.org/10.30865/mib.v8i3.7661Keywords:
Salad, Classification, VGG16, Xception, NasNetMobileAbstract
Salad is a type of leafy vegetable belonging to the Compositae family, genus Lactuca. It is rich in nutrients, including fiber, vitamin A, and minerals. Salad greens can cleanse the blood and fat, help people with coughs, and prevent high cholesterol, constipation, and insomnia. With the increasing population and awareness of the benefits of a balanced diet, consumer demand for lettuce has significantly increased. Consequently, farmers have expanded lettuce cultivation to meet consumer demand, which has the potential to cause errors in sorting different types of lettuce. Therefore, research focusing on the classification and detection of lettuce varieties is crucial to help farmers efficiently harvest lettuce based on its type using Convolutional Neural Network (CNN) methods, comparing three models: VGG16, Xception, and NasNetMobile. Data were directly obtained from lettuce farms and Kaggle. After pre-processing steps such as resizing and augmentation, the data were trained with various amounts, 200 epochs, and 64 batches during the architectural modeling stage. Based on the research results, the accuracy analysis with image classification of various types of lettuce concluded that using the Convolutional Neural Network (CNN) method by comparing three models VGG16, Xception, and NasNetMobile can classify each type of lettuce based on its class with high accuracy. In the tests conducted on the trained model, using an input size of 120 x 120, 200 epochs, and a batch size of 64, the NasNetMobile architecture model achieved the highest scores with an accuracy of 98.33%, precision of 97.8%, recall of 97.9%, and an F1-score of 97.8%. With these excellent accuracy values, the researchers hope that this analysis will make a significant contribution to the development of a superior and more efficient image classification system for agriculture, especially in selecting the appropriate CNN architecture.
References
M. Rahman and A. Pambudi, “Identifikasi Citra Daun Selada Dalam Menentukan Kualitas Tanaman Menggunakan Algoritma Convolutional Neural Network (Cnn),†J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, pp. 2830–7062, 2023, [Online]. Available: http://dx.doi.org/10.23960/jitet.v11i3 s1.3438
M. R. S. Erwin and M. A. A. G., & Triawan, “Deteksi Hama Ulat Pada Tanaman Selada Berbasis Aquaponic Menggunakan CNN (Convolutional Neural Network),†e-Proceeding Eng., vol. 8, no. 5, pp. 10254–10263, 2021.
A. A. Marunduh and L. Lina, “Klasifikasi Emosi Pada Wajah Dari Rekaman Aplikasi Video Conference Dengan Menggunakan Metode Convolutional Neural Network,†J. Ilmu Komput. dan Sist. Inf., vol. 9, no. 1, p. 27, 2021, doi: 10.24912/jiksi.v9i1.11554.
S. Darmawan Putra Bahari and U. Latifa, “Klasifikasi Buah Segar Menggunakan Teknik Computer Vision Untuk Pendeteksian Kualitas Dan Kesegaran Buah,†JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1567–1573, 2023, doi: 10.36040/jati.v7i3.6871.
M. R. Efrian and U. Latifa, “Image Recognition Berbasis Convolutional Neural Network (Cnn) Untuk Mendeteksi Penyakit Kulit Pada Manusia,†Power Elektron. J. Orang Elektro, vol. 11, no. 2, p. 276, 2022, doi: 10.30591/polektro.v12i1.3874.
A. Peryanto, A. Yudhana, and R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning BerbPeryanto, A., Yudhana, A., & Umar, R. (2020). Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network. Format : Jurnal Ilmiah Teknik I,†Format J. Ilm. Tek. Inform., vol. 8, no. 2, p. 138, 2020.
M. Raihan, R. Allaam, and A. T. Wibowo, “Klasifikasi Genus Tanaman Anggrek Menggunakan Metode Convolutional Neural Network (CNN),†e-Prceeding Eng., vol. 8, no. 2, pp. 1–1153, 2021.
F. R. Tarigan, R. Andrian, and R. Safe’i, “Klasifikasi Skala Kerapatan dan Transparansi Tajuk Jenis Daun Jarum dengan VGG16,†MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 253–263, 2023, doi: 10.57152/malcom.v3i2.940.
N. IBRAHIM et al., “Klasifikasi Tingkat Kematangan Pucuk Daun Teh menggunakan Metode Convolutional Neural Network,†ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 10, no. 1, p. 162, 2022, doi: 10.26760/elkomika.v10i1.162.
R. Kurniawan, P. B. Wintoro, Y. Mulyani, and M. Komarudin, “Implementasi Arsitektur Xception Pada Model Machine Learning Klasifikasi Sampah Anorganik,†J. Inform. dan Tek. Elektro Terap., vol. 11, no. 2, pp. 233–236, 2023, doi: 10.23960/jitet.v11i2.3034.
T. S. Winanto, C. Rozikin, and A. Jamaludin, “Analisa Performa Arsitektur Transfer Learning Untuk Mengindentifikasi Penyakit Daun Pada Tanaman Pangan,†J. Appl. Informatics Comput., vol. 7, no. 1, pp. 68–81, 2023, doi: 10.30871/jaic.v7i1.5991.
A. Fuadi and A. Suharso, “Perbandingan Arsitektur Mobilenet Dan Nasnetmobile Untuk Klasifikasi Penyakit Pada Citra Daun Kentang,†JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 3, pp. 701–710, 2022, doi: 10.29100/jipi.v7i3.3026.
M. Iqbal Fathur Rozi et al., “Identifikasi Kinerja Arsitektur Transfer Learning VGG16, ResNet-50, dan Inception-V3 Dalam Pengklasifikasian Citra Penyakit Daun Tomat Identification of VGG16, ResNet-50, and Inception-V3 Transfer Architecture Performance in Image Classification of Tomato,†Hal, vol. 5, no. 2, pp. 145–154, 2023, [Online]. Available: http://jurnalnasional.ump.ac.id/index.php/JRRE
J. R. Aisya and A. Prasetiadi, “Klasifikasi Penyakit Daun Kentang dengan Metode CNN dan RNN,†J. Tekno Insentif, vol. 17, no. 1, pp. 1–10, 2023, doi: 10.36787/jti.v17i1.888.
A. M. A. Siddik, A. Lawi, and M. wahid islahfari, “Perbandingan Kinerja Model Ensembled Transfer Learning Pada Klasifikasi Penyakit Daun Tomat,†Semin. Nas. Tek. Elektro dan Inform., vol. 8, no. 1, pp. 286–291, 2022, [Online]. Available: http://118.98.121.208/index.php/sntei/article/view/3630
D. S. Anggraeni, A. Widayana, P. D. Rahayu, and C. Rozikin, “STRING (Satuan Tulisan Riset dan Inovasi Teknologi) METODE ALGORITMA CONVOLUTIONAL NEURAL NETWORK PADA KLASIFIKASI PENYAKIT TANAMAN CABAI,†vol. 7, no. 1, 2022.
A. Faizin, A. T. Arsanto, A. R. Musa, P. T. Informatika, U. Y. Pasuruan, and B. Blight, “DEEP PRE-TRAINED MODEL MENGGUNAKAN ARSITEKTUR DENSENET,†vol. 6, no. 2, pp. 615–621, 2022.
P. Setiawati, A. Satyo, and B. Karno, “Using Xception , Transfer Learning , and Permutation to Improve the Classification of Steel Surface Imperfections Menggunakan Xception , Transfer Learning , dan Permutasi untuk Meningkatkan Klasifikasi Ketidaksempurnaan Permukaan Baja,†vol. 4, no. January, pp. 350–358, 2024.
T. B. Sasongko, H. Haryoko, and A. Amrullah, “Analisis Efek Augmentasi Dataset dan Fine Tune pada Algoritma Pre-Trained Convolutional Neural Network (CNN),†J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 4, pp. 763–768, 2023, doi: 10.25126/jtiik.20241046583.
A. Kurniadi, “Implementasi Convolutional Neural Network Untuk Klasifikasi Varietas Pada Citra Daun Sawi Menggunakan Keras,†DoubleClick J. Comput. Inf. Technol., vol. 4, no. 1, p. 25, 2020, doi: 10.25273/doubleclick.v4i1.5812.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).