Implementasi Algoritma Fuzzy C-Means menggunakan Model LRFM untuk Mendukung Strategi Pengelolaan Pelanggan
Abstract
The same treatment of all customers will cause customers who are not so valuable to become value destroyers in the concept of Customer Relationship Management. Providing discounts and promos to all customers without differentiating customer segments has not provided significant benefits for a company. These two things are being experienced by BC 4 HNI Pekanbaru, so changes are needed in evaluating the strategies taken to maintain relationships with customers and form segments according to customer characteristics. Customer segments can be analyzed from sales transaction data. The purpose of this study is to manage and group sales transaction data in determining customer segmentation so that the strategy is more targeted. The analysis of customer transaction data was carried out by grouping the data using the Fuzzy C-means algorithm and the length, recency, frequency, monetary (LRFM) model, and AHP weighting. The formation of the number of validated clusters of the silhouette index and ranking is carried out by multiplying the weight of AHP to find the customer lifetime value (CLV) so that it can be known which customer groups provide high value to the company. The result of this study is that BC 4 HNI Pekanbaru customers are grouped into 2 segments, namely the potential customer group which has a fairly frequent transaction value with an average monetary value of Rp. 2,802,495.00 and a fairly high number of transactions contribute greatly to the Company and the new customer group which means a new customer segment with uncertain funds, an average monetary of Rp. 104,567.00. Based on the segment, BC 4 HNI Pekanbaru can carry out a strategy in managing its customers according to the type of segment generated from this research.
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 233 timesPDF - 153 times
References
A. Handijono, R. I. Gunarto, and S. Marpitasa, “MENJAGA LOYALITAS PELANGGAN DENGAN STRATEGI CRM PADA PT. DESALITE, PAMULANG,” RESWARA: Jurnal Pengabdian Kepada Masyarakat, vol. 2, no. 1, pp. 64–71, 2021.
A. A. D. Sulistyawati and M. Sadikin, “Penerapan Algoritma K-Medoids Untuk Menentukan Segmentasi Pelanggan,” SISTEMASI: Jurnal Sistem Informasi, vol. 10, no. 3, pp. 516–526, 2021.
M. K. Sihotang, “Pengaruh Harga Dan Kualitas Produk Terhadap Keputusan Pembelian Produk (Studi Kasus Pada Konsumen Produk Pt. Hni Hpai),” Jurnal Ilmiah Ekonomi Dan Bisnis Triangle, vol. 1, no. 2, pp. 399–413, 2020.
S. Monalisa, P. Nadya, and R. Novita, “Analysis for customer lifetime value categorization with RFM model,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 834–840. doi: 10.1016/j.procs.2019.11.190.
A. Syaputra, Zulkarnain, and E. Laoh, “Customer Segmentation on Returned Product Customers Using Time Series Clustering Analysis,” in 7th International Conference on ICT for Smart Society: AIoT for Smart Society, ICISS 2020 - Proceeding, Institute of Electrical and Electronics Engineers Inc., Nov. 2020. doi: 10.1109/ICISS50791.2020.9307575.
L. Waroka, S. Monalisa, D. Anjainah, and N. Arifin, “Implementasi Algoritma Fuzzy C-Means (Fcm) Dalam Pengklasterisasian Nilai Hidup Pelanggan Dengan Model Lrfm,” Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, vol. 6, no. 1, pp. 1–5, 2020.
S. Monalisa and I. Erza, “Analisis Loyalitas Agen Biasa dan Agenstok Menggunakan Model RFM (Recency, Frequency, Monetery) dan Algoritma K-Medoids pada BC 4 HPAI Pekanbaru,” Techno. Com, vol. 20, no. 1, pp. 109–121, 2021.
F. Juniati, R. Zafa, and S. Monalisa, “KLASTERISASI CUSTOMER LIFETIME VALUE DENGAN MODEL LRFM MENGGUNAKAN ALGORITMA FUZZY C-MEANS,” Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, vol. 6, no. 1, 2020.
T. L. Saaty, “Decision making with the analytic hierarchy process,” International journal of services sciences, vol. 1, no. 1, pp. 83–98, 2008.
F. Marisa, S. S. S. Ahmad, Z. I. M. Yusof, F. Hunaini, and T. M. A. Aziz, “Segmentation model of customer lifetime value in small and medium enterprise (SMEs) using K-means clustering and LRFM model,” International Journal of Integrated Engineering, vol. 11, no. 3, 2019.
W. D. Dahana, Y. Miwa, and M. Morisada, “Linking lifestyle to customer lifetime value: An exploratory study in an online fashion retail market,” J Bus Res, vol. 99, pp. 319–331, Jun. 2019, doi: 10.1016/j.jbusres.2019.02.049.
A. B. Çavdar and N. Ferhatosmanoğlu, “Airline customer lifetime value estimation using data analytics supported by social network information,” J Air Transp Manag, vol. 67, pp. 19–33, 2018.
N. Lubis, “Penerapan Customer Relationship Management (Crm) Dengan Menggunakan Metode Lrfm Analysis,” JURNAL DINAMIKA MANAJEMEN DAN BISNIS, vol. 1, no. 2, 2018.
I. Made, D. Pradipta, A. Eka Anwar Wahyudi, and S. Aryani, “Fuzzy C-Means Clustering for Customer Segmentation.”
Y. Sun, H. Liu, and Y. Gao, “Research on customer lifetime value based on machine learning algorithms and customer relationship management analysis model,” Heliyon, vol. 9, no. 2, Feb. 2023, doi: 10.1016/j.heliyon.2023.e13384.
N. Zahid, M. Limouri, and A. Essaid, “A new cluster-validity for fuzzy clustering”.
A. Jaini, A. Weni Syaputri, T. Qurahman, S. Thaufik Rizaldi, P. H. Studi Sistem Informasi Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau Jl Soebrantas Km, and P. Pekanbaru Riau, “Perbandingan Algoritma Fuzzy C-Means dan K-Medoids untuk Pengelompokan Data Penjualan pada 212 Mart,” 2020.
M. T. Dharmawan, N. Y. Setiawan, and F. A. Bachtiar, “Segmentasi Pelanggan Menggunakan Metode Fuzzy C-Means Clustering Berdasarkan LRFM Model Pada Toko Sepatu (Studi Kasus: Ride Inc Kota Malang),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, vol. 2548, p. 964X, 2019.
S. S. Prasetyo, M. Mustafid, and A. R. Hakim, “Penerapan fuzzy c-means kluster untuk segmentasi pelanggan e-commerce dengan metode recency frequency monetary (RFM),” Jurnal Gaussian, vol. 9, no. 4, pp. 421–433, 2020.
R. Rahmadianti, A. Dhini, and E. Laoh, “Estimating customer lifetime value using LRFM model in pharmaceutical and medical device distribution company,” in 2020 International Conference on ICT for Smart Society (ICISS), IEEE, 2020, pp. 1–5.
A. Z. Putri, M. Afdal, S. Monalisa, and I. Permana, “Penerapan Algoritma Fuzzy C-Means Pada Segmentasi Pelanggan B2B dengan Model LRFM,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, pp. 1423–1432, 2023.
M. Mustakim, U. R. Gurning, A. P. Pristiawati, A. Dina, and P. Nabillah, “Pengelompokan Data Loyalitas Pelanggan Model RFM pada Produk Ms Glow Dan Scarlett dengan Algoritma Fuzzy C-Means,” in Seminar Nasional Teknologi Informasi Komunikasi dan Industri, pp. 29–34.
N. Ulinnuha, “Provincial Clustering in Indonesia Based on Plantation Production Using Fuzzy C-Means,” ITSMART: Jurnal Teknologi dan Informasi, vol. 9, no. 1, pp. 8–12, 2020.
T. L. Nikmah, N. H. S. Harahap, G. C. Utami, and M. M. Razzaq, “Customer Segmentation Based on Loyalty Level Using K-Means and LRFM Feature Selection in Retail Online Store,” Jurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer, vol. 7, no. 1, pp. 21–28, 2023.
A. G. Aggarwal and S. Yadav, “Customer segmentation using fuzzy-AHP and RFM model,” in 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), IEEE, 2020, pp. 77–80.
S. Monalisa and R. Zafa, “KLASTERISASI CUSTOMER LIFETIME VALUE DENGAN MODEL LRFM MENGGUNAKAN ALGORITMA Fuzzy C-Means,” Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, vol. 6, no. 1, pp. 38–42, 2020.
N. P. V. Viandari, I. M. A. D. Suarjaya, and I. N. Piarsa, “Pemetaan Pelanggan dengan LRFM dan Two Stage Clustering untuk Memenuhi Strategi Pengelolaan,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 130–139, 2022.
A. Wicaksono, F. A. Bachtiar, and N. Y. Setiawan, “Segmentasi Pelanggan Menggunakan Fuzzy C-Means Clustering berdasarkan RFM Model pada E-Commerce (Studi Kasus: E-Commerce XYZ),” 2021. [Online]. Available: http://j-ptiik.ub.ac.id
D. Fitrianah, W. Gunawan, and R. Algian Kurniaputra, “Techno Xplore Jurnal Ilmu Komputer dan Teknologi Informasi Implementasi Algoritma DBScan dalam Pemngambilan Data Menggunakan Scatterplot.”
Mustakim, M. Z. Fauzi, Mustafa, A. Abdullah, and Rohayati, “Clustering of Public Opinion on Natural Disasters in Indonesia Using DBSCAN and K-Medoids Algorithms,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Feb. 2021. doi: 10.1088/1742-6596/1783/1/012016.
S. Sarah, “Analisis Penerimaan Vaksin Covid-19 Berbasis Fuzzy Clustering Machine Learning di Provinsi Riau,” Jurnal Riset Komputer), vol. 8, no. 6, pp. 2407–389, 2021, doi: 10.30865/jurikom.v8i6.3636.
R. Dewi, W. Verina, D. H. Tanjung, and S. L. Rahayu, “Application of AHP method based on competence for determining the best graduate students,” in 2018 6th International Conference on Cyber and IT Service Management (CITSM), IEEE, 2018, pp. 1–5.
L. Mayola, M. Afdhal, and M. H. Yuhandri, “Analytical Hierarchy Process (AHP) dalam Seleksi Penerimaan Mahasiswa Baru,” Jurnal KomtekInfo, pp. 81–86, 2023.
U. D. Puspita and Y. Yundari, “SEGMENTASI CUSTOMER LIFETIME VALUE PADA MODEL LRFM MENGGUNAKAN METODE K-MEANS EUCLIDEAN DISTANC,” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 12, no. 5.
S. Monalisa, P. Nadya, and R. Novita, “Analysis for customer lifetime value categorization with RFM model,” Procedia Comput Sci, vol. 161, pp. 834–840, 2019.
N. Lubis, S. Si, and M. Rizan, “PENERAPAN CUSTOMER RELATIONSHIP MANAGEMENT (CRM) DENGAN MENGGUNAKAN METODE LRFM ANALYSIS DI PT PHAPROS Tbk.”
G. Purnama, T. H. Pudjiantoro, and P. N. Sabrina, “Data Mining SEGMENTASI PELANGGAN MENGGUNAKAN K-MEDOIDS BERDASARKAN MODEL LENGTH, RECENCY, FREQUENCY, MONETARY (LRFM),” in SNIA (Seminar Nasional Informatika dan Aplikasinya), 2021, pp. B29-34.
H. Wang, J. Wang, and Z. Zhong, “Research on Precision Marketing Strategy Based on Cluster Analysis Algorithm,” in 2020 International Conference on E-Commerce and Internet Technology (ECIT), IEEE, 2020, pp. 208–211.
A. J. Christy, A. Umamakeswari, L. Priyatharsini, and A. Neyaa, “RFM ranking–An effective approach to customer segmentation,” Journal of King Saud University-Computer and Information Sciences, vol. 33, no. 10, pp. 1251–1257, 2021.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA
This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.