Penerapan Algoritma K-Means Menggunakan Model LRFM Dalam Klasterisasi Nilai Hidup Pelanggan

Authors

  • Tiara Afrah Afifah Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Rice Novita Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Tengku Khairil Ahsyar Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Zarnelly Zarnelly Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru

DOI:

https://doi.org/10.30865/mib.v8i2.7605

Keywords:

CRM, Clustering, LRFM, K-Means, CLV

Abstract

In implementing customer relationship management, there are still many companies that have not utilized CRM optimally as part of their business strategy. As is the case with UD Sandeni. UD Sandeni still has problems in managing its relationships with customers because UD Sandeni does not fully understand the difference between customer information that is profitable and unprofitable for the company's sustainability. UD Sandeni has used a system to manage customer transaction data. However, this system is only used to calculate profits and create bookkeeping for registered agents so that UD Sandeni does not have an in-depth understanding of the characteristics of its customers. To overcome this problem, the solution that can be applied is to use customer grouping techniques, such as clustering. Customer transaction data is processed using a clustering process with K-Means and LRFM. Test the validity of cluster results using DBI and calculate CLV values using AHP weights to produce cluster rankings. The results of this research obtained customer clustering which consists of 2 segments, namely cluster 1 which has the highest CLV value of 0.3171156 with a total of 298 customers and includes the High Value Loyal Customers segmentation, and cluster 2 with a CLV value of 0.1434054 with a total of 72 customers. which is included in the segmentation of uncertain new customers (uncertain lost customers).

Author Biography

Tiara Afrah Afifah, Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru

Prodi Sistem Informasi

References

F. F. Wati and U. Khasanah, “Sistem Informasi Penjualan Berbasis Web pada UD Dwi Surya Aluminium dan Kaca Yogyakarta,†vol. XXI, no. 2, pp. 149–156, 2019, doi: 10.31294/p.v20i2.

D. P. Hidayatullah, R. I. Rokhmawati, and ..., “Analisis Pemetaan Pelanggan Potensial Menggunakan Algoritma K-Means dan LRFM Model Untuk Mendukung Strategi Pengelolaan Pelanggan (Studi Pada …,†… Inf. dan Ilmu …, vol. 2, no. 8, 2018, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1769

S. Monalisa, “Klusterisasi Customer Lifetime Value dengan Model LRFM menggunakan Algoritma K-Means,†J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, p. 247, 2018, doi: 10.25126/jtiik.201852690.

H. Lohonauman, “Ipteks Perhitungan Costumer Lifetime Value,†J. Ipteks Akunt. Bagi Masy., vol. 4, no. 1, p. 19, 2020, doi: 10.32400/jiam.4.1.2020.29236.

A. N. Husna, “ANALISIS PENERAPAN CUSTOMER RELATIONSHIP MANAGEMENT DAN PERHITUNGAN CUSTOMER LIFETIME VALUE UNTUK MENINGKATKAN PROFITABILITAS PELANGGAN PADA DIPONEGORO PRINTING,†Ятыатат, vol. вы12у, no. 235, p. 245, 2019, [Online]. Available: http://digilib.unila.ac.id/4949/15/BAB II.pdf

K. Z. Wijaya, A. Djunaidi, and F. Mahananto, “Segmentasi Pelanggan Menggunakan Algoritma K-Means dan Analisis RFM di Ova Gaming E-Sports Arena Kediri,†J. Tek. ITS, vol. 10, no. 2, 2021, doi: 10.12962/j23373539.v10i2.67707.

M. A. Shah Putra, S. Monalisa, J. Julhandri, and I. Khoiru, “Penerapan Algoritma Fuzzy C-Means Menggunakan Model Rfm Dalam Klasterisasi Pelanggan Pada Toko Kue Feandra Cake,†J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 6, no. 1, p. 64, 2020, doi: 10.24014/rmsi.v6i1.8646.

Y. Wicaksono, “Segmentasi Pelanggan Bisnis Dengan Multi Kriteria Menggunakan K-Means,†Indones. J. Bus. Intell., vol. 1, no. 2, p. 45, 2019, doi: 10.21927/ijubi.v1i2.872.

H. Priyatman, F. Sajid, and D. Haldivany, “Klasterisasi Menggunakan Algoritma K-Means Clustering untuk Memprediksi Waktu Kelulusan Mahasiswa,†J. Edukasi dan Penelit. Inform., vol. 5, no. 1, p. 62, 2019, doi: 10.26418/jp.v5i1.29611.

E. Muningsih, “Komparasi Metode Clustering K-Means Dan K-Medoids Dengan Model Fuzzy Rfm Untuk Pengelompokan Pelanggan,†Evolusi J. Sains dan Manaj., vol. 6, no. 2, 2018, doi: 10.31294/evolusi.v6i2.4600.

S. D. K. Wardani, A. S. Ariyanto, M. Umroh, and D. Rolliawati, “Perbandingan Hasil Metode Clustering K-Means, Db Scanner & Hierarchical Untuk Analisa Segmentasi Pasar,†JIKO (Jurnal Inform. dan Komputer), vol. 7, no. 2, p. 191, 2023, doi: 10.26798/jiko.v7i2.796.

H. Syukron, M. Fauzi Fayyad, F. Junita Fauzan, Y. Ikhsani, and U. Rizkya Gurning, “Perbandingan K-Means K-Medoids dan Fuzzy C-Means untuk Pengelompokan Data Pelanggan dengan Model LRFM,†MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 2, pp. 76–83, 2022, doi: 10.57152/malcom.v2i2.442.

M. Warsela, A. D. Wahyudi, and A. Sulistiyawati, “Penerapan Customer Relationship Management Untuk Mendukung Marketing Credit Executive (Studi Kasus: Pt Fif Group),†J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 78, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

S. A. Perdana, S. F. Florentin, and A. Santoso, “ANALISIS SEGMENTASI PELANGGAN MENGGUNAKAN K-MEANS CLUSTERING STUDI KASUS APLIKASI ALFAGIFT,†Sebatik, vol. 26, no. 2, pp. 420–427, 2022, doi: 10.46984/sebatik.v26i2.2134.

D. S. Syaharni, E. G. Fauzi, L. Then, S. Sirait, and F. A. Sinambela, “ANALISIS PENGELOMPOKAN KONSUMEN DALAM MENENTUKAN KONTEN PEMASARAN,†vol. 2, no. 6, pp. 2347–2366, 2023.

F. Marisa, S. S. S. Ahmad, Z. I. M. Yusof, Fachrudin, and T. M. A. Aziz, “Segmentation model of customer lifetime value in Small and Medium Enterprise (SMEs) using K-Means Clustering and LRFM model,†Int. J. Integr. Eng., vol. 11, no. 3, pp. 169–180, 2019, doi: 10.30880/ijie.2019.11.03.018.

U. D. Puspita, “SEGMENTASI CUSTOMER LIFETIME VALUE PADA MODEL LRFM MENGGUNAKAN METODE K- MEANS EUCLIDEAN DISTANCE,†vol. 12, no. 5, pp. 415–424, 2023.

M. Rafi Nahjan, Nono Heryana, and Apriade Voutama, “Implementasi Rapidminer Dengan Metode Clustering K-Means Untuk Analisa Penjualan Pada Toko Oj Cell,†JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 101–104, 2023, doi: 10.36040/jati.v7i1.6094.

A. Pangestu and T. Ridwan, “Penerapan Data Mining Menggunakan Algoritma K-Means Pengelompokan Pelanggan Berdasarkan Kubikasi Air Terjual Menggunakan Weka,†JUST IT J. Sist. Informasi, Teknol. Inf. dan Komput., vol. 11, no. 3, pp. 67–71, 2022.

A. Febriani and S. A. Putri, “Segmentasi Konsumen Berdasarkan Model Recency, Frequency, Monetary dengan Metode K-Means,†JIEMS (Journal Ind. Eng. Manag. Syst., vol. 13, no. 2, pp. 52–57, 2020, doi: 10.30813/jiems.v13i2.2274.

D. Kurniawaty, A. Djunaidy, and R. P. Kusumawardani, “Pelanggan Menggunakan Integrasi Metode Ahp Dan Teknik Penggalian Data : Studi Kasus Cv . Xyz,†no. September, 2021.

Downloads

Published

2024-04-30

Issue

Section

Articles