Analisis Sentimen Terhadap Media Sosial Twitter dengan Kasus Kampanye Anti-Korupsi di Indonesia Menggunakan Naive Bayes

 Ni Wayan Ayu Sekar Aprilia (Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia)
 (*)Auliya Rahman Isnain Mail (Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia)

(*) Corresponding Author

Submitted: March 25, 2024; Published: April 23, 2024

Abstract

In Indonesia, the issue of the Anti-Corruption Campaign is often discussed on Twitter, which has become an important platform for voicing public opinions and sentiments. Sentiment analysis of the Anti-Corruption Campaign can provide valuable insights for the government and anti-corruption institutions such as the Corruption Eradication Commission. The aim of this research is to analyze the sentiment felt by the public towards the Anti-Corruption Campaign in Indonesia using the Naïve Bayes method based on data from Twitter. Tweet data related to the Anti-Corruption Campaign in Indonesia is collected via the Twitter API, then preprocessed to clean, tokenize and remove stopwords. A dictionary of positive and negative sentiments is created based on tweet analysis, and the Naïve Bayes method is used to classify tweet sentiments into positive or negative. Method performance is evaluated using a confusion matrix. The research results show that most of the tweets related to the Anti-Corruption Campaign have positive sentiments, but there are also negative ones. This research provides an understanding of public perceptions of the Anti-Corruption Campaign in Indonesia through Twitter sentiment analysis, which can help in formulating anti-corruption policies and strategies in the future. Analysis shows that 58.64% of Twitter accounts have positive sentiment and 41.36% have negative sentiment. Evaluation of test data shows an accuracy level of 74%, a precision level of 79%, and a recall of 76%.

Keywords


Sentiment Analysis; Anti Corruption; Anti-Corruption Campaign; KPK; Twitter

Full Text:

PDF


Article Metrics

Abstract view : 793 times
PDF - 527 times

References

F. R. Siregar and N. T. Sitorus, “Analisis Hukum Terhadap Pertimbangan Hakim Atas Vonis Nihil Kepada Pelaku Tindak Pidana Korupsi,” Jurnal Ilmiah Penegakan Hukum, vol. 9, no. 2, pp. 200–206, Dec. 2022, doi: 10.31289/JIPH.V9I2.7076.

W. H. Suyatmiko, “Memaknai Turunnya Skor Indeks Persepsi Korupsi Indonesia Tahun 2020,” Integritas : Jurnal Antikorupsi, vol. 7, no. 1, pp. 161–178, Jun. 2021, doi: 10.32697/INTEGRITAS.V7I1.717.

J. Pendidikan Transformatif, Z. Syafitri Atmadja, K. Najmi Salma Herdani, G. Santoso, and U. Muhammadiyah Jakarta, “Analisis Hukum Atas Implementasi UUD Negara Republik Indonesia dalam Penanganan Kasus Korupsi di Indonesia,” Jurnal Pendidikan Transformatif, vol. 1, no. 3, pp. 127–136, Dec. 2022, doi: 10.9000/JPT.V1I3.426.

I. D. A. Tirtasari and O. D. Hartomo, “Pengaruh GCG Dan Karakteristik Perusahaan Terhadap Kecenderungan Mengungkapkan Kebijakan Anti Korupsi,” Jurnal Akuntansi Bisnis, vol. 17, no. 2, p. 131, Nov. 2019, doi: 10.24167/jab.v17i2.2337.

T. Baharuddin, S. Salahudin, S. Sairin, Z. Qodir, and H. Jubba, “Kampanye Antikorupsi Kaum Muda melalui Media Sosial Twitter,” Jurnal Ilmu Komunikasi, vol. 19, no. 1, p. 58, May 2021, doi: 10.31315/jik.v19i1.3827.

F. Fridom Mailo et al., “Analisis sentimen data twitter menggunakan metode text mining tentang masalah obesitas di indonesia,” Journal of Information Systems for Public Health, vol. 6, no. 1, pp. 44–51, Oct. 2021, doi: 10.22146/JISPH.44455.

S. Y. Pangestu, Y. Astuti, and L. D. Farida, “ALGORITMA SUPPORT VECTOR MACHINE UNTUK KLASIFIKASI SIKAP POLITIK TERHADAP PARTAI POLITIK INDONESIA,” Jurnal Mantik Penusa, vol. 3, no. 1, pp. 236–241, 2019, [Online]. Available: https://t.co/eF

A. Rivaldy, H. Aviela, F. Wowor, S. R. Maisya, and D. Safitri, “PENGGUNAAN TWITTER DALAM MENINGKATKAN MELEK POLITIK MAHASISWA ILMU KOMUNIKASI UNIVERSITAS NEGERI JAKARTA,” vol. 5, pp. 41–48, 2021.

R. Ferdiana, F. Jatmiko, D. D. Purwanti, A. Sekar, T. Ayu, and W. F. Dicka, “Dataset Indonesia untuk Analisis Sentimen,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 8, no. 4, pp. 334–339, Nov. 2019, Accessed: Apr. 05, 2024. [Online]. Available: https://journal.ugm.ac.id/v3/JNTETI/article/view/2558

R. Arief and K. Imanuel, “ANALISIS SENTIMEN TOPIK VIRAL DESA PENARI PADA MEDIA SOSIAL TWITTER DENGAN METODE LEXICON BASED Universitas Gunadarma 1, 2 Jalan Margonda Raya No 100 Depok Jawa Barat 16424 Sur-el : rifiana@staff.gunadarma.ac.id 1 , karel4404@gmail.com 2,” Jurnal Ilmiah MATRIK, vol. 21, no. 3, 2019.

D. Joko Haryanto, L. Muflikhah, and M. Ali Fauzi, “Analisis Sentimen Review Barang Berbahasa Indonesia Dengan Metode Support Vector Machine Dan Query Expansion,” 2018. [Online]. Available: http://j-ptiik.ub.ac.id

A. Syakir and F. N. Hasan, “JURNAL MEDIA INFORMATIKA BUDIDARMA Analisis Sentimen Masyarakat Terhadap Perilaku Korupsi Pejabat Pemerintah Berdasarkan Tweet Menggunakan Naive Bayes Classifier,” vol. 7, pp. 1796–1805, 2023, doi: 10.30865/mib.v7i4.6648.

N. Tri Romadloni, I. Santoso, S. Budilaksono, and M. Ilmu Komputer STMIK Nusa Mandiri Jakarta, “PERBANDINGAN METODE NAIVE BAYES, KNN DAN DECISION TREE TERHADAP ANALISIS SENTIMEN TRANSPORTASI KRL COMMUTER LINE,” IKRA-ITH Informatika : Jurnal Komputer dan Informatika, vol. 3, no. 2, pp. 1–9, 2019, Accessed: Apr. 05, 2024. [Online]. Available: https://ojs.upi-yai.ac.id/index.php/ikraith-informatika/article/view/311

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 2, pp. 437–444, Apr. 2020, doi: 10.30865/MIB.V4I2.2080.

S. Hendrian, “Algoritma Klasifikasi Data Mining Untuk Memprediksi Siswa Dalam Memperoleh Bantuan Dana Pendidikan,” Faktor Exacta, vol. 11, no. 3, Oct. 2018, doi: 10.30998/faktorexacta.v11i3.2777.

U. Prediksi, P. Bantuan, J. Kesehatan, N. Attamami, A. Triayudi, and R. T. Aldisa, “Analisis Performa Algoritma Klasifikasi Naive Bayes dan C4.5 untuk Prediksi Penerima Bantuan Jaminan Kesehatan,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 7, no. 2, pp. 262–269, Apr. 2023, doi: 10.35870/JTIK.V7I2.756.

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “PENERAPAN ALGORITMA SVM UNTUK ANALISIS SENTIMEN PADA DATA TWITTER KOMISI PEMBERANTASAN KORUPSI REPUBLIK INDONESIA,” Jurnal Ilmiah Edutic : Pendidikan dan Informatika, vol. 7, no. 1, pp. 1–11, Nov. 2020, doi: 10.21107/EDUTIC.V7I1.8779.

L. A. Andika, P. A. N. Azizah, and R. Respatiwulan, “Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” Indonesian Journal of Applied Statistics, vol. 2, no. 1, pp. 34–41, Jul. 2019, doi: 10.13057/IJAS.V2I1.29998.

N. Pramesti, “Klasifikasi Persediaan Barang Menggunakan Naive Bayes,” JURNAL DATA SCIENCE & INFORMATIKA, vol. 1, no. 2, pp. 53–57, 2021, Accessed: Mar. 19, 2024. [Online]. Available: https://publikasi.bigdatascience.id/index.php/jdsi/article/view/17

S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, S. Khomsah, and A. S. Aribowo, “Text-Preprocessing Model Youtube Comments in Indonesian,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 4, pp. 648–654, Aug. 2020, doi: 10.29207/RESTI.V4I4.2035.

S. K. Dirjen et al., “Sentiment Analysis Analysis of E-Wallet Sentiments on Google Play Using the Naive Bayes Algorithm Based on Particle Swarm Optimization,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 3, no. 3, pp. 377–382, Dec. 2019, doi: 10.29207/RESTI.V3I3.1118.

S. K. Dirjen et al., “Sentiment Analysis Analysis of E-Wallet Sentiments on Google Play Using the Naive Bayes Algorithm Based on Particle Swarm Optimization,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 3, no. 3, pp. 377–382, Dec. 2019, doi: 10.29207/RESTI.V3I3.1118.

W. Y. Widiawati, W. Y. Widiawati, and R. M. Atok, “Analisis Klasifikasi Pelanggan Listrik Rumah Tangga Bersubsidi Kota Surabaya Menggunakan Support Vector Machine dan Naïve Bayes Classifier,” Jurnal Sains dan Seni ITS, vol. 7, no. 2, pp. 235–242, Feb. 2019, doi: 10.12962/j23373520.v7i2.35366.

F. Febrianti, R. Saptono, and R. Anggrainingsih, “THE EFFECT OF NAIVE BAYES CLASSIFIER USING DUMMY VARIABLE AND FEATURE BACKWARD SELECTION WITH PEARSON CORRELATION IN DIAGNOSING GYNECOLOGY,” ITSMART: Jurnal Teknologi dan Informasi, vol. 8, no. 1, pp. 50–57, Sep. 2019, doi: 10.20961/ITSMART.V8I1.28968.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Media Sosial Twitter dengan Kasus Kampanye Anti-Korupsi di Indonesia Menggunakan Naive Bayes

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.