Analisis Clustering Global Living Cost Berdasarkan Socioeconomic Status Menggunakan Algoritma DBSCAN

 (*)Siswadi Perdana Putra Mail (Universitas Muhammadiyah Surakarta, Surakarta, Indonesia)
 Dimas Aryo Anggoro (Universitas Muhammadiyah Surakarta, Surakarta, Indonesia)

(*) Corresponding Author

Submitted: March 18, 2024; Published: April 23, 2024

Abstract

The development of the world economy is currently undergoing a very complex phase characterised by very different changes. These changes have a significant impact on the cost of living and quality of life of people in various countries around the world. Factors such as government policies, economy, income, transport, fuel play an important role in various changes in the world economy. Then this research aims to cluster the cost of living on the "Global Living Cost" dataset against socioeconomic status and also determine the performance of the DBSCAN algorithm on several types of "Global Living Cost" datasets that have been modified by perturbing using jitter position, combination of jitter position and scale, and noise perturbation then also using several dimensionality reduction techniques such as PCA, UMAP, t-SNE, and ICA. The data used is taken from "Kaggle. com", then obtained similarity results using the jaccard similarity method that the combination of clustering and dimensionality reduction algorithms for the "Global Living Cost" dataset from the best is DBSCAN and ICA with the highest similarity score of several types of datasets, namely 1.0, DBSCAN and PCA with the highest similarity score of 0.998769735493131, DBSCAN and t-SNE with the highest similarity score of 0.9995897435897436, and the last is DBSCAN and UMAP with the highest similarity score of 0.8065233506300964. The conclusion obtained is that the DBSCAN algorithm is able to work very well for different types of datasets.

Keywords


Clustering; DBSCAN; Economy; SES

Full Text:

PDF


Article Metrics

Abstract view : 218 times
PDF - 56 times

References

World Bank, June 2021 Global Economic Prospects, no. June. 2021. [Online]. Available: https://www.worldbank.org/en/publication/global-economic-prospects

H. Howe, “World Economic Outlook,” Int. Assoc. Energy Econ., pp. 543–558, 2021, doi: 10.4324/9780429268175-39.

T. W. Bank et al., “WORLD DEVELOPMENT REPORT 2024 Economic Growth in Middle-Income Countries,” pp. 1–6, 2023.

G. Navarro-Carrillo, M. Alonso-Ferres, M. Moya, and I. Valor-Segura, “Socioeconomic Status and Psychological Well-Being: Revisiting the Role of Subjective Socioeconomic Status,” Front. Psychol., vol. 11, no. June, pp. 1–15, 2020, doi: 10.3389/fpsyg.2020.01303.

D. Prayogo and S. Sukim, “Determinan Daya Beli Masyarakat Indonesia Selama Pandemi Covid-19 Tahun 2020,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 631–640, 2021, doi: 10.34123/semnasoffstat.v2021i1.987.

R. P. P. Nur Rizqi Febriandika Ayu Arlinda, “Proceeding of 3rd International Conference On Islamic Economics, Islamic ISSN : 2798-9739 Finance, & Islamic Law (ICIEIFIL) in conjunction with 3rd International Conference on Islamic and Muhammadiyah Studies (ICIMS) 11-12 January 2023 OBSERVATION OF ISLA,” 2023, vol. 09, no. 8, pp. 316–327.

R. Anggara and A. Rahman, “Implementasi Algoritma DBSCAN Dalam Mengelompokan Data Pasien Terdiagnosa Penyakit Ginjal Kronis(PGK),” J. Algoritm., vol. 3, no. 1, pp. 114–123, 2022, doi: 10.35957/algoritme.v3i1.3593.

L. Wang, H. Wang, X. Han, and W. Zhou, “A novel adaptive density-based spatial clustering of application with noise based on bird swarm optimization algorithm,” Comput. Commun., vol. 174, pp. 205–214, 2021, doi: 10.1016/j.comcom.2021.03.021.

M. Huang, Q. Bao, Y. Zhang, and W. Feng, “A hybrid algorithm for forecasting financial time series data based on DBSCAN and SVR,” Inf., vol. 10, no. 3, 2019, doi: 10.3390/info10030103.

A. Chefrour and L. Souici-Meslati, “AMF-IDBSCAN: Incremental density based clustering algorithm using adaptive median filtering technique,” Inform., vol. 43, no. 4, pp. 495–506, 2019, doi: 10.31449/inf.v43i4.2629.

H. Chen et al., “Μ 2 -1,2-,” Al Intaj J. Ekon. dan Perbank. Syariah, vol. 6, no. 2, p. 159, 2020, [Online]. Available: http://jurnal.umt.ac.id/index.php/nyimak

A. Kristianto, “Implementasi DBSCAN dalam Clustering Data Minat Mahasiswa Setelah Pandemi Covid19,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 2, no. 2, pp. 426–431, 2022, doi: 10.24002/konstelasi.v2i2.5638.

A. V. Aurora Ramirez, Nathalie Moreno, “Expert Systems - 2021 - Ram rez - Rule‐based preprocessing for data stream mining using complex event processing.pdf.” 2021.

D. A. Anggoro and N. C. Aziz, “Implementation of K-Nearest Neighbors Algorithm for Predicting Heart Disease Using Python Flask,” Iraqi J. Sci., vol. 62, no. 9, pp. 3196–3219, 2021, doi: 10.24996/ijs.2021.62.9.33.

F. Ridzuan and W. M. N. Wan Zainon, “A review on data cleansing methods for big data,” Procedia Comput. Sci., vol. 161, pp. 731–738, 2019, doi: 10.1016/j.procs.2019.11.177.

A. Fahim, “An Extended DBSCAN Clustering Algorithm,” vol. 13, no. 3, pp. 245–258, 2022.

S. Dwididanti and D. A. Anggoro, “Analisis Perbandingan Algoritma Bisecting K-Means dan Fuzzy C-Means pada Data Pengguna Kartu Kredit,” Emit. J. Tek. Elektro, vol. 22, no. 2, pp. 110–117, 2022, doi: 10.23917/emitor.v22i2.15677.

E. A. Fadlilah, “Identifikasi Anomali Data Akademik Menggunakan Dbscan Outlier Detection,” Pros. Sains Nas. dan Teknol., vol. 12, no. 1, p. 336, 2022, doi: 10.36499/psnst.v12i1.7012.

H. Santoso and A. Musdholifah, “Case Base Reasoning (CBR) and Density Based Spatial Clustering Application with Noise (DBSCAN)-based Indexing in Medical Expert Systems,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 5, no. 2, pp. 169–178, 2019, doi: 10.23917/khif.v5i2.8323.

A. Sarma et al., “μDBSCAN: An Exact Scalable DBSCAN Algorithm for Big Data Exploiting Spatial Locality,” in 2019 IEEE International Conference on Cluster Computing (CLUSTER), 2019, pp. 1–11. doi: 10.1109/CLUSTER.2019.8891020.

A. Bryant and K. Cios, “RNN-DBSCAN: A Density-Based Clustering Algorithm Using Reverse Nearest Neighbor Density Estimates,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 6, pp. 1109–1121, 2018, doi: 10.1109/TKDE.2017.2787640.

N. Salman, “Density-Based Clustering Analysis,” Insypro Inf. Syst. Process., vol. 8, pp. 1–8, 2023, [Online]. Available: http://journal.uinalauddin.ac.id/index.php/insypro

U. Hasanah and D. A. Mutiara, “Perbandingan Metode Cosine Similarity dan Jaccard Similarity untuk Penilaian Otomatis Jawaban Pendek,” Sensitif 2019, pp. 1255–1263, 2020.

M. R. R. Susanto, Husni Thamrin, and Naufal Azmi Verdikha, “Performance of Text Similarity Algorithms for Essay Answer Scoring in Online Examinations,” J. Tek. Inform., vol. 4, no. 6, pp. 1515–1521, 2023, doi: 10.52436/1.jutif.2023.4.6.1025.

C. Plattel, “Distributed and Incremental Clustering using Shared Nearest Neighbours,” 2014.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Clustering Global Living Cost Berdasarkan Socioeconomic Status Menggunakan Algoritma DBSCAN

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.