Analisis Clustering Global Living Cost Berdasarkan Socioeconomic Status Menggunakan Algoritma DBSCAN
Abstract
Keywords
Full Text:
PDFReferences
World Bank, June 2021 Global Economic Prospects, no. June. 2021. [Online]. Available: https://www.worldbank.org/en/publication/global-economic-prospects
H. Howe, “World Economic Outlook,†Int. Assoc. Energy Econ., pp. 543–558, 2021, doi: 10.4324/9780429268175-39.
T. W. Bank et al., “WORLD DEVELOPMENT REPORT 2024 Economic Growth in Middle-Income Countries,†pp. 1–6, 2023.
G. Navarro-Carrillo, M. Alonso-Ferres, M. Moya, and I. Valor-Segura, “Socioeconomic Status and Psychological Well-Being: Revisiting the Role of Subjective Socioeconomic Status,†Front. Psychol., vol. 11, no. June, pp. 1–15, 2020, doi: 10.3389/fpsyg.2020.01303.
D. Prayogo and S. Sukim, “Determinan Daya Beli Masyarakat Indonesia Selama Pandemi Covid-19 Tahun 2020,†Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 631–640, 2021, doi: 10.34123/semnasoffstat.v2021i1.987.
R. P. P. Nur Rizqi Febriandika Ayu Arlinda, “Proceeding of 3rd International Conference On Islamic Economics, Islamic ISSN : 2798-9739 Finance, & Islamic Law (ICIEIFIL) in conjunction with 3rd International Conference on Islamic and Muhammadiyah Studies (ICIMS) 11-12 January 2023 OBSERVATION OF ISLA,†2023, vol. 09, no. 8, pp. 316–327.
R. Anggara and A. Rahman, “Implementasi Algoritma DBSCAN Dalam Mengelompokan Data Pasien Terdiagnosa Penyakit Ginjal Kronis(PGK),†J. Algoritm., vol. 3, no. 1, pp. 114–123, 2022, doi: 10.35957/algoritme.v3i1.3593.
L. Wang, H. Wang, X. Han, and W. Zhou, “A novel adaptive density-based spatial clustering of application with noise based on bird swarm optimization algorithm,†Comput. Commun., vol. 174, pp. 205–214, 2021, doi: 10.1016/j.comcom.2021.03.021.
M. Huang, Q. Bao, Y. Zhang, and W. Feng, “A hybrid algorithm for forecasting financial time series data based on DBSCAN and SVR,†Inf., vol. 10, no. 3, 2019, doi: 10.3390/info10030103.
A. Chefrour and L. Souici-Meslati, “AMF-IDBSCAN: Incremental density based clustering algorithm using adaptive median filtering technique,†Inform., vol. 43, no. 4, pp. 495–506, 2019, doi: 10.31449/inf.v43i4.2629.
H. Chen et al., “Μ 2 -1,2-,†Al Intaj J. Ekon. dan Perbank. Syariah, vol. 6, no. 2, p. 159, 2020, [Online]. Available: http://jurnal.umt.ac.id/index.php/nyimak
A. Kristianto, “Implementasi DBSCAN dalam Clustering Data Minat Mahasiswa Setelah Pandemi Covid19,†KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 2, no. 2, pp. 426–431, 2022, doi: 10.24002/konstelasi.v2i2.5638.
A. V. Aurora Ramirez, Nathalie Moreno, “Expert Systems - 2021 - Ram rez - Ruleâ€based preprocessing for data stream mining using complex event processing.pdf.†2021.
D. A. Anggoro and N. C. Aziz, “Implementation of K-Nearest Neighbors Algorithm for Predicting Heart Disease Using Python Flask,†Iraqi J. Sci., vol. 62, no. 9, pp. 3196–3219, 2021, doi: 10.24996/ijs.2021.62.9.33.
F. Ridzuan and W. M. N. Wan Zainon, “A review on data cleansing methods for big data,†Procedia Comput. Sci., vol. 161, pp. 731–738, 2019, doi: 10.1016/j.procs.2019.11.177.
A. Fahim, “An Extended DBSCAN Clustering Algorithm,†vol. 13, no. 3, pp. 245–258, 2022.
S. Dwididanti and D. A. Anggoro, “Analisis Perbandingan Algoritma Bisecting K-Means dan Fuzzy C-Means pada Data Pengguna Kartu Kredit,†Emit. J. Tek. Elektro, vol. 22, no. 2, pp. 110–117, 2022, doi: 10.23917/emitor.v22i2.15677.
E. A. Fadlilah, “Identifikasi Anomali Data Akademik Menggunakan Dbscan Outlier Detection,†Pros. Sains Nas. dan Teknol., vol. 12, no. 1, p. 336, 2022, doi: 10.36499/psnst.v12i1.7012.
H. Santoso and A. Musdholifah, “Case Base Reasoning (CBR) and Density Based Spatial Clustering Application with Noise (DBSCAN)-based Indexing in Medical Expert Systems,†Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 5, no. 2, pp. 169–178, 2019, doi: 10.23917/khif.v5i2.8323.
A. Sarma et al., “μDBSCAN: An Exact Scalable DBSCAN Algorithm for Big Data Exploiting Spatial Locality,†in 2019 IEEE International Conference on Cluster Computing (CLUSTER), 2019, pp. 1–11. doi: 10.1109/CLUSTER.2019.8891020.
A. Bryant and K. Cios, “RNN-DBSCAN: A Density-Based Clustering Algorithm Using Reverse Nearest Neighbor Density Estimates,†IEEE Trans. Knowl. Data Eng., vol. 30, no. 6, pp. 1109–1121, 2018, doi: 10.1109/TKDE.2017.2787640.
N. Salman, “Density-Based Clustering Analysis,†Insypro Inf. Syst. Process., vol. 8, pp. 1–8, 2023, [Online]. Available: http://journal.uinalauddin.ac.id/index.php/insypro
U. Hasanah and D. A. Mutiara, “Perbandingan Metode Cosine Similarity dan Jaccard Similarity untuk Penilaian Otomatis Jawaban Pendek,†Sensitif 2019, pp. 1255–1263, 2020.
M. R. R. Susanto, Husni Thamrin, and Naufal Azmi Verdikha, “Performance of Text Similarity Algorithms for Essay Answer Scoring in Online Examinations,†J. Tek. Inform., vol. 4, no. 6, pp. 1515–1521, 2023, doi: 10.52436/1.jutif.2023.4.6.1025.
C. Plattel, “Distributed and Incremental Clustering using Shared Nearest Neighbours,†2014.
DOI: https://doi.org/10.30865/mib.v8i2.7567
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.