Analisis Sentimen Kegiatan Pembersihan Sampah Pada Media Sosial X Menggunakan SVM dan Naïve Bayes

 Dendy Aprilianto Nugroho (Universitas Muhammadiyah Prof. Dr. Hamka, DKI Jakarta, Indonesia)
 (*)Firman Noor Hasan Mail (Universitas Muhammadiyah Prof. Dr. Hamka, DKI Jakarta, Indonesia)

(*) Corresponding Author

Submitted: March 16, 2024; Published: April 23, 2024

Abstract

Human daily activities inevitably produce waste, which negatively impacts environmental balance due to the bad habit of indiscriminately disposing of waste. As a result of this issue, there is a youth community named Pandawara Group that wants to help clean up trash on Sukabumi Beach. However, their initiative faced rejection from the local village chief and youth organization, sparking various opinions on social media platform X. Consequently, this research seeks to analyze public sentiment towards Pandawara Group's waste cleanup efforts at Sukabumi Beach using Support Vector Machine and Naïve Bayes methods. The objective is to gauge positive and negative sentiments and compare the accuracy of Support Vector Machine and Naïve Bayes.  In this sentiment analysis using 2,339 datasets, the highest accuracy was achieved using the Support Vector Machine method at 91.67%, whereas the Naïve Bayes method only achieved 63.89%. Thus, it can be concluded that Support Vector Machine is superior in classifying sentiments regarding Pandawara Group's waste cleanup activities at Sukabumi Beach compared to Naïve Bayes.

Keywords


Sentiment Analysis; Trash Cleaning Activity; Social Media X; Support Vector Machine; Naïve Bayes

Full Text:

PDF


Article Metrics

Abstract view : 738 times
PDF - 361 times

References

Alfandi Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” ZONAsi: Jurnal Sistem Informasi, vol. 5, no. 1, pp. 59–70, Jan. 2023, doi: 10.31849/zn.v5i1.12856.

U. Yudatama et al., Memahami Teknologi Informasi. Kaizen Media Publishing, 2023. Accessed: Nov. 09, 2023. [Online]. Available: https://books.google.co.id/books?hl=en&lr=&id=P1HcEAAAQBAJ&oi=fnd&pg=PA67&ots=IbIdz291Sh&sig=PpRhRy3NzUL5g_DRmADqLutTNVM&redir_esc=y#v=onepage&q&f=false

Y. W. S. Putra et al., Pengantar Aplikasi Mobile. Penerbit Haura Utama, 2023. Accessed: Nov. 09, 2023. [Online]. Available: https://books.google.co.id/books?hl=en&lr=&id=2tLcEAAAQBAJ&oi=fnd&pg=PA35&ots=6KrSgdfjRC&sig=4RreBQDatMWWGzhSD6baVSyPLkQ&redir_esc=y#v=onepage&q&f=false

A. R. Abdillah and F. N. Hasan, “Analisis Sentimen Terhadap Kandidat Calon Presiden Berdasarkan Tweets Di Sosial Media Menggunakan Naive Bayes Classifier,” SMATIKA JURNAL, vol. 13, no. 01, pp. 117–130, Jul. 2023, doi: 10.32664/smatika.v13i01.750.

A. D. Riyanto, “Hootsuite (We are Social): Data Digital Indonesian 2024,” andi.link. Accessed: Nov. 05, 2023. [Online]. Available: https://andi.link/hootsuite-we-are-social-data-digital-indonesia-2024/

H. Dhery, A. Assyam, and F. N. Hasan, “Analisis Sentimen Twitter Terhadap Perpindahan Ibu Kota Negara Ke IKN Nusantara Menggunakan Orange Data Mining,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 1, pp. 341–349, 2023, doi: 10.30865/klik.v4i1.957.

Ankit and N. Saleena, “An Ensemble Classification System for Twitter Sentiment Analysis,” Procedia Comput Sci, vol. 132, no. 1, pp. 937–946, 2018, doi: 10.1016/j.procs.2018.05.109.

K. A. Puspita, I. Rachmawati, and H. Sampurna, “Pengaruh Implementasi Kebijakan Pengelolaan Sampah Terhadap Partisipasi Masyarakat di Kota Sukabumi,” Kebijakan : Jurnal Ilmu Administrasi, vol. 14, no. 1, pp. 1–11, Jan. 2023, doi: 10.23969/kebijakan.v14i1.5807.

O. Ramdhani, I. Yustiana, and A. Fergina, “Rancang Bangun Sistem Informasi Bank Sampah Menggunakan Metode Prototype (Studi Kasus di Kampung Lembur Sawah, Sukabumi),” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 7, no. 3, pp. 757–767, Aug. 2022, doi: 10.29100/jipi.v7i3.3080.

Kementrian Lingkungan Hidup, “Capaian Kinerja Pengelolaan Sampah,” SIPSN: Sistem Pengelolaan Sampah Nasional. Accessed: Nov. 06, 2023. [Online]. Available: https://sipsn.menlhk.go.id/sipsn/public/data/timbulan

Ditjen PP, “Database Peraturan PerUndang-Undangan,” Peraturan.go.id. Accessed: Nov. 06, 2023. [Online]. Available: https://peraturan.go.id/

BBC News, “Aksi Pandawara Group bersihkan Pantai Loji sempat ditolak kepala desa - Mengapa sampah di pesisir atau sungai tak diurus?,” BBC News Indonesia. Accessed: Nov. 06, 2023. [Online]. Available: https://www.bbc.com/indonesia/articles/cd1jd17p9j7o#:~:text=Pandawara%20Group%20adalah%20sekumpulan%20anak,Group%20dengan%20mengajak%20warga%20setempat.

M. Dwijayanti, F. Noor Hasan, and R. Zein Adam, “Analisis Sentimen Pada Ulasan Pelanggan Menggunakan Metode Naïve Bayes Classifier (Studi Kasus: Grab Indonesia),” Prosiding Seminar Nasional Teknoka, vol. 6, no. 1, pp. 93–99, Jan. 2022, doi: 10.22236/teknoka.v6i1.441.

A. Syakir and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Perilaku Korupsi Pejabat Pemerintah Berdasarkan Tweet Menggunakan Naive Bayes Classifier,” Jurnal Media Informatika Budidarma, vol. 7, no. 1, pp. 1796–1805, 2023, doi: 10.30865/mib.v7i4.6648.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA JURNAL, vol. 10, no. 02, pp. 71–76, Dec. 2020, doi: 10.32664/smatika.v10i02.455.

A. T. Zy and W. Hadikristanto, “Implementasi Algoritma Metode Naive Bayes dan Support Vector Machine Tentang Pembobolan dan Kebocoran Data di Twitter,” Bulletin of Information Technology (BIT), vol. 4, no. 1, pp. 49–56, 2023, doi: 10.47065/bit.v3i1.

R. Yunita and M. Kamayani, “Perbandingan Algoritma SVM Dan Naïve Bayes Pada Analisis Sentimen Penghapusan Kewajiban Skripsi,” Indonesian Journal of Computer Science, vol. 12, no. 5, pp. 2879–2890, Oct. 2023, doi: 10.33022/ijcs.v12i5.3415.

R. Puspita and A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, pp. 646–654, Dec. 2021, doi: 10.32493/informatika.v5i4.7622.

J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 6, pp. 1120–1126, Dec. 2021, doi: 10.29207/resti.v5i6.3588.

A. Puji Astuti, S. Alam, and I. Jaelani, “Komparasi Algoritma Support Vector Machine dengan Naive Bayes Untuk Analisis Sentimen Pada Aplikasi BRImo,” Jurnal Bangkit Indonesia, vol. 11, no. 2, pp. 1–6, Oct. 2022, doi: 10.52771/bangkitindonesia.v11i2.196.

F. P. Herlambang and D. Avianto, “Analisis Sentimen Opini Pengguna Twitter Terhadap Tragedi Kanjuruhan Malang dengan Metode Support Vector Machine,” Jurnal Media Informatika Budidarma, vol. 7, no. 4, pp. 1727–1739, Oct. 2023, doi: 10.30865/mib.v7i4.6332.

S. D. Prasetyo, S. S. Hilabi, and F. Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” Jurnal KomtekInfo, vol. 10, no. 1, pp. 1–7, Jan. 2023, doi: 10.35134/komtekinfo.v10i1.330.

L. A. Sari, N. F. Ramadhita, and F. N. Hasan, “Analysis Of Public Sentiment On Google Play Store TIJE Application Users Using Naïve Bayes Cassifier Method,” JUTIF Jurnal Teknik Informatika, vol. 5, no. 1, pp. 243–251, Feb. 2024, doi: 10.52436/1.jutif.2024.5.1.1648.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier dan Confusion Matrix pada Analisis Sentimen Berbasis Teks pada Twitter,” Jurnal Sains Komputer dan Informatika (J-Sakti), vol. 5, no. 2, pp. 697–711, 2021, doi: 10.30645/j-sakti.v5i2.369.

O. R. Hartono, “Indonesian Stoplist,” Kaggle. Accessed: Feb. 25, 2024. [Online]. Available: https://www.kaggle.com/datasets/oswinrh/indonesian-stoplist

A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma SVM,” Jurnal Data Mining dan Sistem Informasi, vol. 2, no. 1, pp. 31–37, Feb. 2021, doi: 10.33365/jdmsi.v2i1.1021.

A. Librian, “Stemming Sastrawi,” Github. Accessed: Mar. 02, 2024. [Online]. Available: https://github.com/sastrawi/sastrawi

A. T. Mukti and F. N. Hasan, “Analisis Sentimen Warganet Terhadap Keberadaan Juru Parkir Liar Menggunakan Metode Naive Bayes Classifier,” Jurnal Media Informatika Budidarma, vol. 8, no. 1, pp. 644–653, Jan. 2024, doi: 10.30865/mib.v8i1.6982.

R. Wati, S. Ernawati, and H. Rachmi, “Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH,” Jurnal Manajemen Informatika (JAMIKA), vol. 13, no. 1, pp. 84–93, Apr. 2023, doi: 10.34010/jamika.v13i1.9424.

M. G. Pradana, “Penggunaan Fitur Wordcloud dan Document Term Matrix dalam Text Mining,” Jurnal Ilmiah Informatika, vol. 8, no. 01, pp. 38–43, 2020, doi: 10.33884/jif.v8i01.1838.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.