Implementasi Algoritma K-Means dan K-Medoids Dalam Klasterisasi Kasus Kekerasan Terhadap Perempuan

 (*)Nur Azizah Kamilah Mail (Universitas Buana Perjuangan Karawang, Karawang, Indonesia)
 Tatang Rohana (Universitas Buana Perjuangan Karawang, Karawang, Indonesia)
 Rahmat Rahmat (Universitas Buana Perjuangan Karawang, Karawang, Indonesia)
 Ahmad Fauzi (Universitas Buana Perjuangan Karawang, Karawang, Indonesia)

(*) Corresponding Author

Submitted: March 14, 2024; Published: April 23, 2024

Abstract

The number of women's violence in Indonesia is increasing. In West Java alone, 58,395 cases of violence against women were recorded. Violence against women that occurs in West Java is among the most common compared to other provinces. This high number shows that violence against women is still not being handled seriously. Therefore, clustering is carried out to achieve a more structured solution so that it can assist the government in providing appropriate and appropriate responses to the conditions of each region, so that case handling can be more focused. The aim of this research is to group districts or cities in West Java in cases of violence against women using the K-Means and K-Medoids algorithms into two clusters, namely, high and low. In this research, data grouping was carried out using 2 methods, namely the K-Means and K-Medoids algorithms to find out which comparison between the two algorithms is more optimal. It is hoped that this research will produce the best cluster, the results of this cluster can help the government and related agencies to determine which districts or cities should be prioritized in handling cases of violence against women in West Java. The results of this research produced 2 clusters. Cluster 0 (high) and cluster 1 (low). The number of cluster 0 (high) is 14 districts and cities, while cluster 1 (low) is 13 districts and cities. Comparing the clustering evaluation between K-Means and K-Medoids, the best cluster evaluation value was obtained using the K-Medoids Algorithm with a Silhoutte Coefficient evaluation of 0.43, while the Davies Bouldin Index evaluation results showed the best cluster results using the K-Means Algorithm with a DBI value of 0.95.

Keywords


Clustering; K-Means; K-Medoids; Silhouette Coefficient; Davies Bouldin Index

Full Text:

PDF


Article Metrics

Abstract view : 394 times
PDF - 228 times

References

R. Fauziah and A. I. Purnamasari, “Implementasi Algoritma K-Means pada Kasus Kekerasan Anak dan Perempuan Berdasarkan Usia,” Hello World Jurnal Ilmu Komputer, vol. 2, no. 1, pp. 34–41, Mar. 2023, doi: 10.56211/helloworld.v2i1.232.

S. Rahmanirwana Fushshilat, and N. Cipta Apsari, M, “SISTEM SOSIAL PATRIARKI SEBAGAI AKAR DARI KEKERASAN SEKSUAL TERHADAP PEREMPUAN PATRIARCHAL SOCIAL SYSTEM AS THE ROOT OF SEXUAL VIOLENCE AGAINST WOMEN,” 2020, [Online]. Available: https://www.komnasperempuan.go.id/reads-

Dimas Bayu, “Kekerasan terhadap Perempuan Terbanyak di Jawa Barat pada 2021,” dataindonesia. Accessed: Dec. 07, 2023. [Online]. Available: https://dataindonesia.id/varia/detail/kekerasan-terhadap-perempuan-terbanyak-di-jawa-barat-pada-2021

H. Sa’diah, U. Enri, and T. N. Padilah, “PENERAPAN ALGORITME K-MEANS DALAM SEGMENTASI DAERAH RAWAN KEKERASAN ANAK DI JAWA BARAT,” JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 7 No. 2, April 2023.

Y. Andini, J. Tata Hardinata, Y. Pranayama Purba, and P. A, “PENERAPAN DATA MINING TERHADAP TATA LETAK BUKU DI PERPUSTAKAAN SINTONG BINGEI PEMATANGSIANTAR MENGGUNAKAN METODE APRIORI,” Jurnal Times, Volume XI No 1, Jun 2022. [Online]. Available: http://ejournal.stmik-time.ac.id

I. A. Nur Afifah and H. Nurdiyanto, “DATA MINING CLUSTERING DALAM PENGELOMPOKAN BUKU PERPUSTAKAAN MENGUNAKAN ALGORITMA K-MEANS,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 8, no. 3, pp. 802–814, Aug. 2023, doi: 10.29100/jipi.v8i3.3891.

E. Prasetyaningrum and P. Susanti, “Perbandingan Algoritma K-Means Dan K-Medoids Untuk Pemetaan Hasil Produksi Buah-Buahan,” Jurnal Media Informatika Budidarma, vol. 7, pp. 1775–1783, 2023, doi: 10.30865/mib.v7i4.6477.

E. Prasetyaningrum and P. Susanti, “Perbandingan Algoritma K-Means Dan K-Medoids Untuk Pemetaan Hasil Produksi Buah-Buahan,” Jurnal Media Informatika Budidarma, vol. 7, pp. 1775–1783, 2023, doi: 10.30865/mib.v7i4.6477.

B. Biantara, T. Rohana, and A. Ratna Juwita, “Perbandingan Algoritma K-Means dan DBSCAN untuk Pengelompokan Data Penyebaran Covid-19 Seluruh Kecamatan di Provinsi Jawa Barat,” Scientific Student Journal for Information, Technology and Science, vol. IV, no. 1, 2023.

L. Febby Olivia, D. Abdi Juliantho, and B. Hendrik, “Komprasi Perbandingan Algoritma K-Means dan K-Medoids Dalam Clustering Penyebaran Kasus Covid 19,” JISED (Journal of Information System and Education Development), vol. 1, no. 2, pp. 30–32, 2023, doi: 10.31849/digitalzone.v12i1.6572ICCS.

S. Bumartaduri, S. Kurnia Gusti, F. Syafria, E. Haerani, and S. Ramadhani, “Penerapan Metode Clustering Dalam Pengelompokan Kasus Perceraian Pada Pengadilan Agama di Kota Pekanbaru Menggunakan Algoritma K-Medoids,” Jurnal Riset Komputer), vol. 10, no. 1, pp. 2407–389, 2023, doi: 10.30865/jurikom.v10i1.5560.

R. Rahma and R. Mufidah, “PENGELOMPOKAN DAERAH RAWAN KEKERASAN TERHADAP PEREMPUAN DAN ANAK DI JAWA BARAT MENGGUNAKAN ALGORITMA K-MEANS,” Jurnal JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 07, No 03, Sep 2022.

S. D. Nirwana, M. I. Jambak, and A. Bardadi, “PERBANDINGAN ALGORITMA K-MEANS DAN K-MEDOIDS DALAM CLUSTERING RATA-RATA PENAMBAHAN KASUS COVID-19 BERDASARKAN KOTA/KABUPATEN DI PROVINSI SUMATERA SELATAN,” JSiI (Jurnal Sistem Informasi), vol. 9, no. 2, pp. 126–131, Sep. 2022, doi: 10.30656/jsii.v9i2.5127.

F. R. Iskak, I. T. Utami, and T. Wuryandari, “IMPLEMENTASI ALGORITMA K-MEDOIDS DAN K-ERROR UNTUK PENGELOMPOKAN KABUPATEN/KOTA DI PROVINSI JAWA TENGAH BERDASARKAN JUMLAH PRODUKSI PETERNAKAN TAHUN 2020,” Jurnal Gaussian, vol. 11, no. 3, pp. 366–376, Jan. 2023, doi: 10.14710/j.gauss.11.3.366-376.

M. Khoncita Dasriana Bau, Y. Setyawan, M. Titah Jatipaningrum, J. Statistika, F. Sains Terapan, and I. AKPRIND Yogyakarta, “PERBANDINGAN METODE ALGORITMA K-MEANS DAN K-MEDOIDS PADA PENGELOMPOKAN KABUPATEN/KOTA DI PROVINSI NUSA TENGGARA TIMUR BERDASARKAN DIMENSI INDEKS PEMBANGUNAN MANUSIA TAHUN 2020,” Jurnal Statistika Industri dan Komputasi, vol. 08, no. 1, pp. 48–57, 2023, [Online]. Available: https://ntt.bps.go.id.

P. Apriyani, A. R. Dikananda, and I. Ali, “Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi,” Hello World Jurnal Ilmu Komputer, vol. 2, no. 1, pp. 20–33, Mar. 2023, doi: 10.56211/helloworld.v2i1.230.

Muhammad Yamin Nurzaman and B. Nurina Sari, “Implementasi K-Means Clustering Dalam,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 10, no. 3, 2023, [Online]. Available: http://jurnal.mdp.ac.id

R. Anjariansyah and A. Triayudi, “Clustering Kebutuhan Makanan untuk Meminimasi Standar Deviasi Angka Kebutuhan Gizi Menggunakan Algoritma K-Means dan K-Medoids,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 597, Jan. 2022, doi: 10.30865/mib.v6i1.3522.

Y. I. Kurniawan, P. R. Anugrah, R. M. Sugihono, F. A. Abimanyu, and L. Afuan, “Pengelompokan Prioritas Negara Yang Membutuhkan Bantuan Menggunakan Clustering K-Means dengan Elbow dan Silhouette,” Jurnal Pendidikan dan Teknologi Indonesia (JPTI), vol. 3, no. 10, pp. 455–463, 2023, doi: 10.52436/1.jpti.343.

D. Jollyta and M. Siddik, “PENGOPTIMALAN PENGUKURAN BREGMAN DIVERGENCES MENGGUNAKAN DAVIES BOULDIN INDEX,” JOISIE Journal Of Information System And Informatics Engineering, vol. 7, no. 1, pp. 174–180, 2023.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.