Analisis Sentimen Terhadap Penggunaan Chatgpt Berdasarka Twitter Menggunakan Algoritma Naïve Bayes

 Dwi Transiska (Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia)
 Dimas Febriawan (Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia)
 (*)Firman Noor Hasan Mail (Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia)

(*) Corresponding Author

Submitted: March 7, 2024; Published: April 30, 2024

Abstract

Chatbots can assist by fostering collaboration between users and companies or organizations. In today's world, artificial intelligence through chatbots has become one of the mainstays in handling various problems. One of the well-known types of chatbots is ChatGPT, which utilizes NLP (Natural Language Processing) technology to understand and respond to user queries and requests. ChatGPT, as a device that is very easy to use for all circles, has a fairly simple interface but does not cause boredom, and the speed in responding to commands given, this is an added value of ChatGPT. Despite the myriad of conveniences offered, ChatGPT also raises concerns on the negative side. The negative side is that there are many concerns that arise, starting from the rampant spread of hoaxes and misunderstandings on social media. The advantages and disadvantages that have been explained above, researchers are encouraged to find out the truth from the public's response regarding ChatGPT more deeply so that this sentiment analysis research is made. Moreover, research related to sentiment analysis can be said to be quite an answer to the confusion of public responses outside related to ChatGPT. This research also starts from the process of Data retrieval on Twitter social media using Rapidminer, in this process the researcher uses the Twitter API token on the Rapidminer application so that it can be obtained. The data that has been obtained is then cleaned through the preprocessing process using the features available in Rapidminer, the result of this process is that the data becomes clean. After being cleaned through preprocessing, it is then labeled as positive or negative which will later be classified by the Naïve Bayes algorithm. This classification aims to divide between positive sentiment and negative sentiment. After performing classification, the data is then evaluated using a confusion matrix and the results are obtained with an accuracy value of 96.55%, a precision value of 89.19%, and a recall value of 95.18%.

Keywords


Algorithm; ChatGPT; Naïve Bayes; Sentiment Analysis; Twitter

Full Text:

PDF


Article Metrics

Abstract view : 517 times
PDF - 221 times

References

Uky Yudatama et al., Memahami Teknologi Informasi. 2023.

Y. Eka and P. Heri, “Implementasi Chatbot ‘ALITTA’ Asisten Virual Dari BALITTAS Sebagai Pusat Informasi Di BALITTAS,” ANTIVIRUS: Jurnal Ilmiah Teknik Informatika, vol. 12, no. 1, pp. 24–35, 2019, doi: https://doi.org/10.35457/antivirus.v13i1.714.

S. Alfandi and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” ZONAsi: Jurnal Sistem Informasi, vol. 5, no. 1, pp. 59–70, 2023, doi: 10.31849/zn.v5i1.12856.

D. Atmajaya, A. Febrianti, and H. Darwis, “Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter,” Indonesian Journal of Computer Science, vol. 12, no. 4, pp. 2173–2181, 2023, doi: 10.33022/ijcs.v12i4.3341.

al as Hafizh Dhery and F. N. Hasan, “Analisis Sentimen Twitter Terhadap Perpindahan Ibu Kota Negara Ke IKN Nusantara Menggunakan Orange Data Mining,” vol. 4, no. 1, pp. 341–349, 2023, doi: 10.30865/klik.v4i1.957.

Styawati, N. Andi, A. Zaenal, and S. Heni, “Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 5, pp. 904–910, Oct. 2021, doi: 10.29207/resti.v5i5.3380.

Y. Akbar and T. Sugiharto, “Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes,” Jurnal Sains dan Teknologi, vol. 5, no. 1, pp. 115–122, 2023, [Online]. Available: https://doi.org/10.55338/saintek.v4i3.1368

S. Wulandari and F. N. Hasan, “Analisis Sentimen Masyarakat Indonesia Terhadap Pengalaman Belanja Thrifting Pada Media Sosial Twitter Menggunakan Algoritma Naïve Bayes,” Jurnal Media Informatika Budidarma, vol. 8, no. 2, pp. 768–776, 2024, doi: 10.30865/mib.v8i2.7520.

T. A. Sari, E. Sinduningrum, and F. Noor Hasan, “Analisis Sentimen Ulasan Pelanggan Pada Aplikasi Fore Coffee Menggunakan Metode Naïve Bayes,” Klik : Kajian Ilmiah Informatika dan Komputer, vol. 3, no. 6, pp. 773–779, 2023, doi: 10.30865/klik.v3i6.884.

Friska Aditia Indriyani, Ahmad Fauzi, and Sutan Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, vol. 10, no. 2, pp. 176–184, Jul. 2023, doi: 10.37373/tekno.v10i2.419.

D. P. Ray, F. N. Hasan, and A. R. Dzikrillah, “Analisis Sentimen Terhadap KPU 2024 Berdasarkan Tweet Media Sosial Twitter Menggunakan Algoritma Naïve Bayes,” Klik: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 4, pp. 2235–2243, 2024, doi: 10.30865/klik.v4i4.1587.

F. H. Noor and M. Dwijayanti, “Analisis Sentimen Ulasan Pelanggan Terhadap Layanan Grab Indonesia Menggunakan Multinominal Naïve Bayes Classifier,” JLK, vol. 4, no. 2, pp. 52–58, 2021, doi: https://doi.org/10.26418/jlk.v4i2.61.

A. C. Khotimah and E. Utami, “Comparison Naïve Bayes Classifier, K-Nearest Neighbor And Support Vector Machine In The Classification Of Individual On Twitter Account,” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 3, pp. 673–680, 2022, doi: 10.20884/1.jutif.2022.3.3.254.

M. I. Ahmadi, D. Gustian, and F. Sembiring, “Analisis Sentiment Masyarakat terhadap Kasus Covid-19 pada Media Sosial Youtube dengan Metode Naive bayes,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 5, no. 2, pp. 807–814, 2021, doi: http://dx.doi.org/10.30645/j-sakti.v5i2.378.

R. Ade, Z. N. Muhammad, and B. Auliya, “Penerapan Cosine Similarity dan Pembobotan TF-IDF untuk Mendeteksi Kemiripan Dokumen,” JLK, vol. 2, no. 1, 2019, doi: https://doi.org/10.26418/jlk.v2i1.17.

A. Hendra, “Analisis Sentimen Review Halodoc Menggunakan Nai ̈ ve Bayes Classifier,” JISKa, vol. 6, no. 2, pp. 78–89, 2021, doi: https://doi.org/10.14421/jiska.2021.6.2.78-89.

S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, S. Khomsah, and A. S. Aribowo, “Model Text-Preprocessing Komentar Youtube Dalam Bahasa Indonesia,” Jurnal Resti (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 4, pp. 648–654, 2020, doi: https://doi.org/10.29207/resti.v4i4.2035.

N. Q. Rizkina and F. N. Hasan, “Analisis Sentimen Komentar Netizen Terhadap Pembubaran Konser NCT 127 Menggunakan Metode Naive Bayes,” Journal of Information System Research, vol. 4, no. 4, pp. 1136–1144, 2023, doi: 10.47065/josh.v4i4.3803.

L. Siliayani, I. Agis Junizar, U. Nuraeni, E. Tohidi, and I. Ali, “Penerapan Algoritma Naive Bayes Untuk Mengetahui Kepuasan Mahasiswa Terhadap Layanan Administrasi Keuangan,” Kopertip , vol. 04, no. 03, pp. 72–78, 2020, doi: https://doi.org/10.32485/kopertip.v4i3.122.

A. Ridhovan et al., “Penerapan Metode Residual Network (RESNET) Dalam Klasifikasi Penyakit Pada Daun Gandum,” JIPI , vol. 07, no. 01, pp. 58–65, 2022, doi: https://doi.org/10.29100/jipi.v7i1.2410.

Yusuf Wahyu Setiya Putra et al., Pengantar Aplikasi Mobile. 2023.

E. Andrian and A. Rahman Isnain, “Analisis Sentimen Masyarakat Terhadap Tiktok Shop di Twitter Menggunakan Metode Naive Bayes Classifier,” Jurnal Media Informatika Budidarma , vol. 8, no. 2, pp. 788–796, 2024, doi: 10.30865/mib.v8i2.7530.

S. H. Ramadhani and M. I. Wahyudin, “Analisis Sentimen Terhadap Vaksinasi Astra Zeneca pada Twitter Menggunakan Metode Naïve Bayes dan K-NN,” Jurnal Teknologi Informasi dan Komunikasi), vol. 6, no. 4, p. 2022, 2022, doi: https://doi.org/10.35870/jti.

S. D. F. Kartika and A. T. Purnomo, “Klasifikasi Berita Menggunakan Metode Multinomial Naïve Bayes,” SCAN, vol. 16, no. 3, pp. 1–8, 2021, doi: https://doi.org/10.33005/scan.v16i3.2870.

A. F. Setya and F. N. Hasan, “Implementasi Algoritma Naïve Bayes Terhadap Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store,” Jurnal ICT : Information Communication & Technology, vol. 23, no. 1, pp. 75–80, 2023, [Online]. Available: https://ejournal.ikmi.ac.id/index.php/jict-ikmi

A. S. Jeremy, M. F. Tresna, and N. Aryo, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” JOURNAL OF INTELLIGENT SYSTEMS AND COMPUTATION, vol. 1, no. 1, pp. 43–49, 2021, doi: https://doi.org/10.52985/insyst.v1i1.36.

Y. I. Kurniawan and T. I. Barokah, “Klasifikasi Penentuan Pengajuan Kartu Kredit Menggunakan K-Nearest Neighbor,” Jurnal Ilmiah MATRIK, vol. 22, no. 1, pp. 73–82, 2020, doi: https://doi.org/10.33557/jurnalmatrik.v22i1.843.

A. Rahim and L. E. Taufiq, “Convolutional Neural Network untuk Kalasifikasi Penggunaan Masker,” Jurnal Teknologi Informasi dan Komunikasi, vol. 10, no. 2, pp. 109–115, 2020, doi: http://dx.doi.org/10.35585%2Finspir.v10i2.2569.

M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 640, Apr. 2021, doi: 10.30865/mib.v5i2.2937.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.