Analisis Sentimen Masyarakat Terhadap Tiktok Shop di Twitter Menggunakan Metode Naive Bayes Classifier

 Eka Andrian (Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia)
 (*)Auliya Rahman Isnain Mail (Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia)

(*) Corresponding Author

Submitted: March 4, 2024; Published: April 23, 2024

Abstract

This research aims to analyze public sentiment towards TikTok Shop through the Twitter platform using the Naive Bayes Classifier Algorithm. This algorithm is used to evaluate public views regarding TikTok Shop and identify Positive and Negative sentiments. The data used in this research is 3,816 data. Then, there are Positive sentiment results of 53.45% and Negative of 46.55%. After analyzing the data, the accuracy result is 78.22% using the Split Data operator. After that, for the results of the Naïve Bayes Classifier implementation on the Recall value has a result of 84% and for the class precision result of 86%. The purpose of this research is to evaluate public views on TikTok Shop through the Twitter platform by utilizing the Naive Bayes Classifier Algorithm. This algorithm is used to analyze sentiments that arise regarding TikTok Shop, with a focus on identifying whether the sentiment is Positive or Negative. This analysis is also used to find out different public opinions about TikTok Shop, such as user experience, features used, and impacts experienced. Therefore, sentiment analysis and natural data processing use the Python programming language to categorize user comment data through a splitting process.

Keywords


Sentiment Analysis; Naïve Bayes Classifier; TikTok Shop; Twitter

Full Text:

PDF


Article Metrics

Abstract view : 640 times
PDF - 465 times

References

S. Saputra Hasibuan and E. Saputra, “JURNAL MEDIA INFORMATIKA BUDIDARMA Sentimen Analisis Terhadap Fitur Tiktok Shop Menggunakan Naïve Bayes dan K-Nearest Neighbor,” 2024, doi: 10.30865/mib.v8i1.7238.

Y. Widiyawati, C. Dwi, S. Ningsih, F. Lestari, and D. G. Pramita, “ANALISIS PENGARUH BELANJA ONLINE TERHADAP PERILAKU PERJALANAN BELANJA DIMASA PANDEMI COVID-19,” Journal of Infrastructural in Civil Engineering, vol. 3, no. 02, pp. 25–31, Aug. 2022, doi: 10.33365/JICE.V3I02.2151.

S. Sarina and A. M. Tanniewa, “Implementasi Algoritma Support Vector Learning Terhadap Analisis Sentimen Penggunaan Aplikasi Tiktok Shop Seller Center,” Prosiding SISFOTEK, vol. 7, no. 1, pp. 165–170, Oct. 2023, Accessed: Jan. 31, 2024. [Online]. Available: https://www.seminar.iaii.or.id/index.php/SISFOTEK/article/view/404

M. Romy Firdaus et al., “Analisis Sentimen Dan Topic Modelling Dalam Aplikasi Ruangguru,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 4, no. 1, pp. 66–76, Mar. 2020, doi: 10.30645/J-SAKTI.V4I1.188.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 5, no. 2, pp. 697–711, Sep. 2021, Accessed: Feb. 02, 2024. [Online]. Available: http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/369

H. Apriyani and K. Kurniati, “Perbandingan Metode Naïve Bayes Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes Melitus,” Journal of Information Technology Ampera, vol. 1, no. 3, pp. 133–143, Dec. 2020, doi: 10.51519/JOURNALITA.VOLUME1.ISSSUE3.YEAR2020.PAGE133-143.

A. N. Sa’adah, A. Rosma, and D. Aulia, “PERSEPSI GENERASI Z TERHADAP FITUR TIKTOK SHOP PADA APLIKASI TIKTOK,” TRANSEKONOMIKA: AKUNTANSI, BISNIS DAN KEUANGAN, vol. 2, no. 5, pp. 131–140, Jun. 2022, doi: 10.55047/TRANSEKONOMIKA.V2I5.176.

F. A. Indriyani, A. Fauzi, and S. Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, vol. 10, no. 2, pp. 176–184, Jul. 2023, doi: 10.37373/TEKNO.V10I2.419.

A. P. Aisyah, H. D. Nurhaepi, N. Khaerani, and A. A. Kusumadinata, “Pengaruh Kualitas Pelayanan E-Commerce Tiktok Shop Terhadap Kepuasan Konsumen,” Karimah Tauhid, vol. 1, no. 6, pp. 890–902, Dec. 2022, doi: 10.30997/KARIMAHTAUHID.V1I6.7699.

J. Khab Sulaiman Dalam, A. Oktavia Praneswara, N. Cahyono, and U. Amikom Yogyakarta, “Analisis Sentimen Ulasan Aplikasi TikTok Shop Seller Center di Google Playstore Menggunakan Algoritma Naive Bayes,” Indonesian Journal of Computer Science, vol. 12, no. 6, p. 3925, Dec. 2023, doi: 10.33022/IJCS.V12I6.3473.

H. Wisnu, M. Afif, and Y. Ruldevyani, “Sentiment analysis on customer satisfaction of digital payment in Indonesia: A comparative study using KNN and Naïve Bayes,” J Phys Conf Ser, vol. 1444, no. 1, p. 012034, Jan. 2020, doi: 10.1088/1742-6596/1444/1/012034.

R. Puja, I. Putra, M. Akbar, and R. Amalia, “Analisis Sentimen Masyarakat Terhadap Kinerja Persatuan Sepakbola Seluruh Indonesia Menggunakan Metode Backpropagation,” Journal of Information Technology Ampera, vol. 1, no. 2, pp. 106–118, Aug. 2020, doi: 10.51519/JOURNALITA.VOLUME1.ISSSUE2.YEAR2020.PAGE106-118.

D. Anjas Ramadhan and E. Budi Setiawan SSi, “Analisis Sentimen Program Acara Di Sctv Pada Twitter Menggunakan Metode Naive Bayes Dan Support Vector Machine,” eProceedings of Engineering, vol. 6, no. 2, Aug. 2019, Accessed: Feb. 03, 2024. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/10708

I. Saputra et al., “Analisis Sentimen Pengguna Marketplace Bukalapak dan Tokopedia di Twitter Menggunakan Machine Learning,” Faktor Exacta, vol. 13, no. 4, pp. 200–207, Feb. 2021, doi: 10.30998/FAKTOREXACTA.V13I4.7074.

E. Kurnianto and D. Febriawan, “Analisis Sentimen Perbedaan Pendapat Netizen Indonesia Terhadap Penutupan Tiktok Shop Menggunakan Algoritma Naïve Bayes,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 5, no. 2, pp. 404–414, Dec. 2023, doi: 10.30865/JSON.V5I2.7170.

A. Senika, R. Rasiban, and D. Iskandar, “Implementasi Metode Naïve Bayes Dalam Penilaian Kinerja Sales Marketing Pada PT. Pachira Distrinusa,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, p. 701, Jan. 2022, doi: 10.30865/MIB.V6I1.3331.

M. Habibi, P. Winar Cahyo, and U. Jenderal Achmad Yani Yogyakarta, “Journal Classification Based on Abstract Using Cosine Similarity and Support Vector Machine,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 4, no. 3, pp. 185–192, Feb. 2020, doi: 10.14421/jiska.2020.43-06.

M. A. Abdullah and D. Mahdiana, “Analisis Sentimen terhadap Peluang Kerja di Indonesia selama Masa Pandemi COVID-19 dengan Metode Klasifikasi Naive Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 2, pp. 1234–1237, Apr. 2022, doi: 10.30865/mib.v6i2.3972.

H. Harmayani and L. Sitorus, “Diagnosa Penyakit Ginjal Kronis Menggunakan Metode Klasifikasi Naive,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, pp. 850–854, Jul. 2020, doi: 10.30865/mib.v4i3.2292.

K. Komariyah, R. Dasuki, D. B. Saputra, S. Anwar, and G. Dwilestari, “Klasifikasi Stok Barang Menggunakan Algoritma Naïve Bayes Pada Pt.Dharma Electrindo Manufacturing,” KOPERTIP : Scientific Journal of Informatics Management and Computer, vol. 4, no. 2, pp. 35–41, Jun. 2020, doi: 10.32485/KOPERTIP.V4I2.117.

N. Salmi and Z. Rustam, “Naïve Bayes Classifier Models for Predicting the Colon Cancer,” IOP Conf Ser Mater Sci Eng, vol. 546, no. 5, p. 052068, Jun. 2019, doi: 10.1088/1757-899X/546/5/052068.

I. Budianto, S. N. Anwar, J. T. Lomba, J. Nomor, and K. Semarang, “Analisis Sentiment Pengguna Twitter Mengenai Program Vaksinasi Covid-19 Menggunakan Algoritma Naïve Bayes,” Jurnal Teknologi Informasi, vol. 6, no. 1, pp. 37–43, Jun. 2022, doi: 10.36294/JURTI.V6I1.2551.

A. Felicia Watratan, A. B. Puspita, D. Moeis, S. Informasi, and S. Profesional Makassar, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” Journal of Applied Computer Science and Technology, vol. 1, no. 1, pp. 7–14, Jul. 2020, doi: 10.52158/JACOST.V1I1.9.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Masyarakat Terhadap Tiktok Shop di Twitter Menggunakan Metode Naive Bayes Classifier

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.