Analisis Sentimen Opini Terhadap Tools Artificial Intelligence (AI) Berdasarkan Twitter Menggunakan Algoritma Naïve Bayes

 Ingrid Oktavia (Universitas Teknokrat Indonesia, Bandar lampung, Indonesia)
 (*)Auliya Rahman Isnain Mail (Universitas Teknokrat Indonesia, Bandar lampung, Indonesia)

(*) Corresponding Author

Submitted: March 1, 2024; Published: April 23, 2024

Abstract

This research aims to analyze public sentiment towards artificial intelligence (AI) tools via the Twitter platform using the Naive Bayes classifier algorithm. Twitter is a popular social media platform for sharing opinions and thoughts, making it suitable for sentiment analysis. Sentiment analysis is the process of analyzing and understanding opinions, attitudes, or feelings contained in text, such as tweets, product reviews, or other social media posts. The problems discussed in sentiment analysis can vary depending on the context. Tests carried out using the Naïve Bayes Classifier algorithm can conclude that the data collected was 2119. In this research, there are several steps that must be taken to analyzethe data, starting with crawling, labeling, preprocessing, splitting data, dividing test data, and training data, and finally applying the Naïve Bayes Classifier Algorithm. The results of the data analysis were divided into two categories: positive and negative, with 58.41% positive data and 12.43% negative data. In the analysis experiment, the Naïve Bayes accuracy value reached 79.41%, with a precision of 88% and a recall of 88%. The aim of the results of this research is to examine the public's response regarding artificial intelligence tools using the Naïve Bayes Classifier Algorithm to provide better sentiment results. So many see AI as a technology that carries great potential to improve human life. On the other hand, there are concerns about AI's negative impact on employment, privacy, and even its potential to take over human control. Ethical concerns also arise regarding the use of AI in decision-making that can affect human lives without adequate control. So artificial intelligence tools can be accepted by society because they have many benefits. Therefore, sentiment analysis and natural data processing use the Python programming language to categorize user comment data through a breakdown process.

Keywords


Sentiment Analysis; Naïve Bayes Classifier; Tools; Artificial Intelligence; Twitter

Full Text:

PDF


Article Metrics

Abstract view : 496 times
PDF - 294 times

References

F. R. Ardiyanto, Y. R. Dewi, Z. A. Fitriyani, and ..., “… of Artificial Intelligence (Ai) for Hijab Business in Mojokerto Using Sentiment Analysis Method Natural Language Processing (Nlp),” J. …, vol. 12, no. 03, pp. 1592–1600, 2023, [Online]. Available: https://ejournal.seaninstitute.or.id/index.php/Ekonomi/article/view/2339

R. Cioffi, M. Travaglioni, G. Piscitelli, A. Petrillo, and F. De Felice, “Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions,” Sustain., vol. 12, no. 2, 2020, doi: 10.3390/su12020492.

Y. Akbar and T. Sugiharto, “Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes (Yuma Akbar 1*, Tri Sugiharto 2 ) Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes,” J. Sains dan Teknol., vol. 5, no. 1, pp. 115–122, 2023, [Online]. Available: https://doi.org/10.55338/saintek.v4i3.1368

A. D. Pratama, “Analisa Sentimen Masyarakat Terhadap Penggunaan CHATGPT Menggunakan Metode Support Vector Machine (SVM),” vol. 9, no. 1, pp. 327–338, 2023, [Online]. Available: https://repository.uksw.edu/handle/123456789/31418%0Ahttps://repository.uksw.edu/bitstream/123456789/31418/3/T1_672019227_Daftar Pustaka.pdf

Deva Ayu Pradani, Choirul Anwar, and Diah Armeliza, “Pengaruh Pemahaman Good Governance dan Penguasaan Teknik Audit Berbantuan Komputer terhadap Artificial Intelligence,” J. Akuntansi, Perpajak. dan Audit., vol. 2, no. 3, pp. 496–516, 2021, doi: 10.21009/japa.0203.02.

B. A. Maulana and N. K. S. Noriska, “Penggunaan Machine Learning dalam Analisa Layanan PegadaianDigital Service Terhadap Kepuasan Nasabah,” Indones. J. Contemp. Multidiscip. Res., vol. 2, no. 4, pp. 681–702, 2023.

S. Maharani, S. Rahmawati, and N. Dewanti, “Transformation of artificial intelligence in the Accounting Profession toward a New Technology Era,” 2023, doi: 10.4108/eai.13-9-2023.2341188.

I. Artikel, “Kepastian hukum karya tulis bantuan kecerdasan buatan sebagai kekayaan intelektual,” no. Ciastech, pp. 223–229, 2023.

A. Kaharudin, A. A. Supriyadi, and ..., “Analisis Sentimen pada Media Sosial dengan Teknik Kecerdasan Buatan Naïve Bayes: Kajian Literatur Review,” OKTAL J. Ilmu …, vol. 2, no. 6, pp. 1642–1649, 2023, [Online]. Available: https://journal.mediapublikasi.id/index.php/oktal/article/view/2944%0Ahttps://journal.mediapublikasi.id/index.php/oktal/article/download/2944/1371

Anastasya Zalsabilla Hermawan, M. Novianto Anggoro, Ditha Lozera, and Asif Faroqi, “Studi Literatur: Ancaman Serangan Siber Artificial Intelligence (Ai) Terhadap Keamanan Data Di Indonesia,” Pros. Semin. Nas. Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 581–591, 2023, doi: 10.33005/sitasi.v3i1.363.

A. Saepudin, R. Aryanti, E. Fitriani, R. Royadi, and D. Ardiansyah, “Analisis Sentimen Pemanfaatan Artificial Intelligence di Dunia Pendidikan Menggunakan SVM Berbasis Particle Swarm Optimization,” Comput. Sci., vol. 4, no. 1, pp. 71–79, 2024, doi: 10.31294/coscience.v4i1.2921.

P. B. Utomo, D. Wahyudi, and A. K. Nalendra, “Implementasi Convolution-Augmented Transfomer Berbasis Kecerdasan Buatan dalam Analisis Sentimen Teks Hasil Konversi Suara ke Teks,” vol. 8, no. 1, pp. 63–71, 2024.

F. Fidiyanti, A. R. Subagja, R. P. Wachyu, and H. Madiistriyatno, “Analisis Strategi Pengembangan Bisnis Menggunakan Teknologi Artificial Intelegence,” J. Compr. Sci., vol. 2, no. 7, pp. 1994–2001, 2023, [Online]. Available: https://jcs.greenpublisher.id/index.php/jcs/article/view/425

A. Wijaya and S. Adi Putra, “Analisis_Sentimen_Artificial_Intelligence_Ai_Pada_,” Sist. Teknol. Inf. Komun., vol. 7, pp. 21–28, 2023.

A. Nurian, “Analisis Sentimen Ulasan Pengguna Aplikasi Google Play Menggunakan Naïve Bayes,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3s1, pp. 1613–1621, 2023, doi: 10.23960/jitet.v11i3s1.3348.

J. Florensius Sianipar, Y. R. Ramadhan, and I. Jaelani, “Analisis Sentimen Pembangunan Kereta Cepat Jakarta-Bandung di Media Sosial Twitter Menggunakan Metode Naive Bayes,” Media Online), vol. 4, no. 1, pp. 360–367, 2023, doi: 10.30865/klik.v4i1.1033.

S. Adelia, E. Milanda, J. Santari, D. T. Kesuma, E. Silvia, and F. Kurniawan, “Analisis Sentimen Belajar Programming Pada Media Sosial Youtube Menggunakan Algoritma Klasifikasi Naive Bayes,” J. Inf. Technol. Ampera, vol. 4, no. 3, pp. 2774–2121, 2023, [Online]. Available: https://journal-computing.org/index.php/journal-ita/index

K. Anwar, “Analisa sentimen Pengguna Instagram Di Indonesia Pada Review Smartphone Menggunakan Naive Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 4, pp. 148–155, 2022, doi: 10.30865/klik.v2i4.315.

K. Kritik, T. Kepala, P. Pada, K. Di, M. Metode, and N. Bayes, “Menggunakan Metode Naive Bayes Classifier Tugas ’ Akhir,” 2021.

N. R. Siahaan, R. Y. Tiffany, S. R. E. Sinaga, and ..., “Analisis Sentimen Ulasan Aplikasi Media Sosial Whatsapp Menggunakan Metode Naive Bayes Classifier,” J. Ilm. …, no. 02, pp. 343–354, 2023, [Online]. Available: https://ejournal.pppmitpa.or.id/index.php/betrik/article/view/104%0Ahttps://ejournal.pppmitpa.or.id/index.php/betrik/article/download/104/76

A. B. Susanto, S. Wiharjo, and T. Liyana, “Analisis Data Minat Customer Terhadap Produk Dengan Menggunakan Algoritma Naive Bayes Classifier: Studi Kasus: Pt Jellyfish Education Indonesia,” Sci. Sacra J. Sains, Teknol. dan Masy., vol. 3, no. 2, pp. 234–241, 2023.

M. Arvyantomo and N. Ratama, “Analisis Sentimen Masyarakat Indonesia terhadap Invasi Russia di Ukraina menggunakan Metode Naive Bayes pada Media Sosial Facebook,” Log. J. Ilmu Komput. …, vol. 1, no. 4, pp. 705–717, 2023, [Online]. Available: https://www.journal.mediapublikasi.id/index.php/logic/article/view/2142

M. I. Fikri, T. S. Sabrila, Y. Azhar, and U. M. Malang, “Comparison of the Naïve Bayes Method and Support Vector Machine on Twitter Sentiment Analysis,” SMATIKA J. STIKI Inform. J., vol. 10, no. 2, pp. 71–76, 2020.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Opini Terhadap Tools Artificial Intelligence (AI) Berdasarkan Twitter Menggunakan Algoritma Naïve Bayes

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.