Deteksi Dini Hipertensi Pada Perusahaan Jasa Keamanan Menggunakan Metode Decision Tree
DOI:
https://doi.org/10.30865/mib.v8i2.7513Keywords:
Hypertension, Decision Trees, Early Detection, Employee, Security ServicesAbstract
Hypertension poses a serious threat to employees in the security services sector, especially those requiring physical and mental readiness. Early detection of hypertension is crucial to prevent potentially fatal complications. This research aims to develop a hypertension prediction model using machine learning algorithms to enhance accuracy compared to conventional methods. Data from Medical Check-ups (MCUs) of 800 employees from PT Demitra Karsa Perdana Site Adaro Tanjung Kalimantan Selatan in 2023 were utilized. The data encompassed health factors and lifestyle choices influencing hypertension, such as age, stress history, cholesterol levels, weight gain, family medical history, smoking habits, alcohol consumption, and diagnoses. The Decision Tree algorithm was employed to classify the data. Classification results were evaluated by calculating accuracy, precision, and recall for hypertension classes (high or normal). Findings indicated that Decision Tree was the best algorithm for predicting hypertension, achieving an accuracy of 92.01%, precision of 99.41%, and recall of 84.42% for high hypertension class. However, the recall value for high hypertension class still needs improvement to prevent high-risk employees from going undetected. This research benefits PT Demitra Karsa Perdana in predicting hypertension among their employees and contributes to the advancement of science and technology. Thus, this study not only enhances our understanding of hypertension but also provides insights into the use of machine learning for early detection of serious diseases in the workplace.References
A. Syntya, “Hipertensi Dan Penyakit Jantung: Literature Review,†J. Ilm. Permas J. Ilm. STIKES Kendal, vol. 11, no. 4, hal. 541–550, 2021, [Daring]. Tersedia pada: http://journal.stikeskendal.ac.id/index.php/PSKM
E. Pramana, “Kemenkes Ungkap Penderita Hipertensi di Indonesia Terus Meningkat,†2022. Diakses: 7 Juli 2023. [Daring]. Tersedia pada: https://www.jawapos.com/kesehatan/01385842/kemenkes-ungkap-penderita-hipertensi-di-indonesia-terus-meningkat
M. A. Aprianur, “Peran Artificial intelligence Dalam Deteksi Penyakit Hipertensi: Sistematik Review,†no. January, 2022, [Daring]. Tersedia pada: https://www.researchgate.net/publication/377086205
M. Rifai dan D. Safitri, “Edukasi Penyakit Hipertensi Warga Dukuh Gebang Kabupaten Gunungkidul,†J. BUDIMAS, vol. 04, no. 02, hal. 1–6, 2022.
I. N. Wirakhmi dan D. Novitasari, “Pemberdayaan Kader Pengendalian Hipertensi,†J. Altifani Penelit. dan Pengabdi. Kpd. Masy., vol. 1, no. 3, hal. 240–248, 2021, doi: 10.25008/altifani.v1i3.162.
E. Suprayitno dan N. Huzaimah, “Pendampingan Lansia Dalam Pencegahan Komplikasi Hipertensi,†SELAPARANG J. Pengabdi. Masy. Berkemajuan, vol. 4, no. 1, hal. 518, 2020, doi: 10.31764/jpmb.v4i1.3001.
A. B. Priyambodo, A. Andrean, D. A. Kamila, M. R. Erwanenda, dan R. T. Ambar Sari, “DETEKSI DINI HIPERTENSI DAN DIABETES MELITUS PADA,†vol. 4, no. 2, 2022.
E.- Purwanto, V. Atina, dan E. S. Desylawati, “Sistem Pakar Deteksi Dini Gangguan Mata dan Syaraf Akibat Penggunaan Smartphone,†J. Inform. Upgris, vol. 3, no. 2, hal. 152–162, 2017, doi: 10.26877/jiu.v3i2.1841.
L. P. Nguyen et al., “The Utilization of Machine Learning Algorithms for Assisting Physicians in the Diagnosis of Diabetes,†Diagnostics, vol. 13, no. 12, hal. 2087, 2023, doi: 10.3390/diagnostics13122087.
Elena et al., “Machine Learning for Credit Scoring : Improving Logistic Regression with Non-Linear Decision-Tree,†no. Fre 2014, hal. 1–35, 2021.
Aditya, F. M. Rizki, dan A. Nuril Lutvi, “Prediction of Hypertension Disease Using Decision Tree and Random Forest Methods [ Prediksi Penyakit Hipertensi Menggunakan metode Decision Tree dan Random Forest ],†hal. 1–9, 2023.
N. K. Surbakti, “Data Mining Pengelompokan Pasien Rawat Inap Peserta BPJS Menggunakan Metode Clustering (Studi Kasus : RSU.Bangkatan),†J. Inf. Technol., vol. 1, no. 2, hal. 47–53, 2021, doi: 10.32938/jitu.v1i2.1470.
D. Papakyriakou dan I. S. Barbounakis, “Data Mining Methods: A Review,†Int. J. Comput. Appl., vol. 183, no. 48, hal. 5–19, 2022, doi: 10.5120/ijca2022921884.
I. W. Gamadarenda dan I. Waspada, “Implementation of Data Mining for the Detection of Chronic Kidney Disease (Ckd) Using K-Nearest Neighbor (Knn) With Backward Elimination,†J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 2, hal. 417–426, 2020, doi: 10.25126/jtiik.202071896.
R. T. Wulandari, “Model Data Mining Sebagai Prediksi Penyakit Hipertensi Kehamilan dengan Teknik Decision Tree,†Model Data Min. Sebagai Prediksi Penyakit Hipertens. Kehamilan dengan Tek. Decis. Tree, vol. 3, no. 1, hal. 19–26, 2018.
D. Kurniawan, Pengenalan Machine Learning dengan Python. PT Elex Media Komputindo, 2022.
S. A. Ramadhan, “Decision Tree Algoritma Beserta Contohnya Pada Data Mining.†Diakses: 11 Juli 2023. [Daring]. Tersedia pada: https://sis.binus.ac.id/2022/01/21/decision-tree-algoritma-beserta-contohnya-pada-data-mining/
I. Zulkarnaen, O. E. Wulandari, Padulah, dan H. Kurnia, “Identifikasi pohon keputusan hipertensi dengan sistem RapidMiner dan metode klasifikasi Hypertension decision tree identification with RapidMiner system and classification method,†vol. 03, no. 01, hal. 63–71, 2023.
M. Z. I. Chowdhury, A. A. Leung, K. C. Sikdar, M. O’Beirne, H. Quan, dan T. C. Turin, “Development and validation of a hypertension risk prediction model and construction of a risk score in a Canadian population,†Sci. Rep., vol. 12, no. 1, hal. 1–19, 2022, doi: 10.1038/s41598-022-16904-x.
Y. A. Singgalen, “Implementation of CRISP-DM for Social Network Analysis ( SNA ) of Tourism and Travel Vlog Content Reviews,†vol. 8, hal. 572–583, 2024, doi: 10.30865/mib.v8i1.7323.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).