Sentimen Analisis Masyarakat Terhadap Pembangunan IKN Menggunakan Algoritma Lexicon Based Approach dan Naïve Bayes
DOI:
https://doi.org/10.30865/mib.v8i2.7506Keywords:
IKN, Lexicon Based, Naïve Bayes Classifier, Sentimen Analisis, TwitterAbstract
The relocation and construction of IKN (Capital City of the Archipelago) as a center for state administration activities has many benefits and shortcomings, starting from the selection of locations, the ratification of laws that are considered too hasty then raises pros and cons by the Indonesian people. President Joko Widodo decided to move the country's capital outside Java in a meeting on April 29, 2019. The location of the IKN development was determined in East Kalimantan. This research was conducted by retrieving data via Twitter with the keyword "IKN Development". The data that has been collected totals 3,680 tweets. Data analysis was carried out with two methods, namely Naïve Bayes Classifier and Lexicon Based, and the best accuracy value was found between the two methods in analyzing data on public responses to IKN Development. The initial step of the data analysis process is the preprocessing process which contains stages such as labelling, case folding, cleaning, tokenizing, stopword removal, stemming. It is known that the results obtained from the analysis of the Naïve Bayes Classifier method have an accuracy value of 79%, and Lexicon Based has an accuracy value of 76%. Sentiment analysis of the two methods has Positive, Negative, and Neutral sentiments. With the stages of the analysis process using the Naïve Bayes Classifier and lexicon based methods, it can be seen that the Naïve Bayes Classifier method shows a Positive sentiment of 47.18%, Negative of 6.33%, and Neutral of 46.49%, while for Lexicon Based, Positive sentiment reaches 54.15%, Negative 29.36%, and Neutral 16.49%. It should be noted that the highest positive polarity result is found in the Lexicon Based algorithm at 54.15%, while in the Naïve Bayes Classifier 47.18%. It can be concluded from the results of both methods that Naïve Bayes Classifier has a better analysis compared to Lexicon-Based analysis.References
E. Nugrohosudin, “Kedudukan Kepala Otorita Ibu Kota Nusantara dalam Undang-Undang Nomor 3 Tahun 2022,†Jurnal Legislatif, vol. 5, no. 2, Agu 2022, doi: 10.20956/jl.v5i2.21002.
G. K. Sari, “INTEGRASI PEMBANGUNAN IBU KOTA NEGARA BARU DAN DAERAH PENYANGGANYA,†STANDAR: Better Standard Better Living, vol. 1, no. 2, hlm. 27–32, Mar 2022, Diakses: 19 April 2024. [Daring]. Tersedia pada: https://majalah.bs ilhk.menlhk.go.id/index.php /STANDAR/article/view/ 23
J. Teknika, R. K. Septiani, S. Anggraeni, dan S. D. Saraswati, “Klasifikasi Sentimen Terhadap Ibu Kota Nusantara (IKN) pada Media Sosial Menggunakan Naive Bayes,†TEKNIKA: Jurnal Ilmiah Bidang Ilmu Rekayasa, vol. 16, no. 2, hlm. 245–254, Sep 2022, doi: 10.5281/ZENODO.7535887.
W. L. Hutasoit, “ANALISA PEMINDAHAN IBUKOTA NEGARA,†DEDIKASI : Jurnal Ilmiah Sosial, Hukum, Budaya, vol. 39, no. 2, hlm. 108–128, Feb 2019, doi: 10.31293/DDK.V39I2.3989.
M. K. Saraswati dkk., “Pemindahan Ibu Kota Negara Ke Provinsi Kalimantan Timur Berdasarkan Analisis SWOT,†JISIP (Jurnal Ilmu Sosial dan Pendidikan), vol. 6, no. 2, hlm. 2598–9944, Mar 2022, doi: 10.58258/JISIP. V6I2. 3086.
A. Y. Syantara, E. D. Wahyuni, dan V. R. S. Nastiti, “Analisis Sentimen Pada Media Sosial Twitter Menggunakan Naïve Bayes Classifier Terhadap Kata Kunci ‘#Asiangames2018,’†Jurnal Repositor, vol. 3, no. 5, 2021, doi: 10.22219/REPOSITOR.V3I5.32044.
S. C. Prima, A. O. Purba, I. W. Yuliarta, dan P. Suwarno, “PERUBAHAN TATA KELOLA MARITIM DI WILAYAH KALIMANTAN TIMUR SEBAGAI IBUKOTA BARU,†NUSANTARA : Jurnal Ilmu Pengetahuan Sosial, vol. 7, no. 3, hlm. 529–537, Okt 2020, doi: 10.31604/JIPS.V7I3.2020.529-537.
R. Ria, A. Hasibuan, dan S. Aisa, “DAMPAK DAN RESIKO PERPINDAHAN IBU KOTA TERHADAP EKONOMI DI INDONESIA,†AT-TAWASSUTH: Jurnal Ekonomi Islam, vol. 5, no. 1, hlm. 183–203, Jun 2020, doi: 10.30829/AJEI.V5I1.7947.
F. Z. Emeraldien, R. J. Sunarsono, dan R. Alit, “TWITTER SEBAGAI PLATFORM KOMUNIKASI POLITIK DI INDONESIA,†Scan : Jurnal Teknologi Informasi dan Komunikasi, vol. 14, no. 1, hlm. 21–30, 2019, doi: 10.33005/SCAN.V14I1.1457.
A. M. Zuhdi, E. Utami, dan S. Raharjo, “ANALISIS SENTIMENT TWITTER TERHADAP CAPRES INDONESIA 2019 DENGAN METODE K-NN,†Jurnal Informa : Jurnal Penelitian dan Pengabdian Masyarakat, vol. 5, no. 2, hlm. 1–7, Agu 2019, doi: 10.46808/INFORMA.V5I2.73.
D. Alita dan A. R. Isnain, “Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier,†Jurnal Komputasi, vol. 8, no. 2, hlm. 50–58, Okt 2020, doi: 10.23960/KOMPUTASI.V8I2.2615.
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, dan W. Gata, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,†Jurnal Teknoinfo, vol. 14, no. 2, hlm. 115–123, Jul 2020, doi: 10.33365/JTI.V14I2.679.
G. N. Aulia dan E. Patriya, “IMPLEMENTASI LEXICON BASED DAN NAIVE BAYES PADA ANALISIS SENTIMEN PENGGUNA TWITTER TOPIK PEMILIHAN PRESIDEN 2019,†Jurnal Ilmiah Informatika Komputer, vol. 24, no. 2, hlm. 140–153, Feb 2020, doi: 10.35760/IK.2019.V24I2.2369.G1875.
N. S. Fathullah, Y. A. Sari, dan P. P. Adikara, “Analisis Sentimen Terhadap Rating dan Ulasan Film dengan menggunakan Metode Klasifikasi Naive Bayes dengan Fitur Lexicon-Based,†Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 2, hlm. 590–593, Apr 2020, Diakses: 19 April 2024. [Daring]. Tersedia pada: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6987
R. L. Mustofa dan B. Prasetiyo, “Sentiment analysis using lexicon-based method with naive bayes classifier algorithm on #newnormal hashtag in twitter,†J Phys Conf Ser, vol. 1918, no. 4, hlm. 042155, Jun 2021, doi: 10.1088/1742-6596/1918/4/042155.
A. R. Kardian dan D. Gustiana, “Analisis Sentimen Berdasarkan Opini Pengguna pada Media Twitter Terhadap BPJS Menggunakan Metode Lexicon Based dan Naïve Bayes Classifier : Array,†Jurnal Ilmiah Komputasi, vol. 20, no. 1, hlm. 39–52, Mar 2021, doi: 10.32409/JIKSTIK.20.1.401.
G. Isabelle, W. Maharani, dan I. Asror, “Analysis on Opinion Mining Using Combining Lexicon-Based Method and Multinomial Naïve Bayes,†hlm. 214–219, Mar 2019, doi: 10.2991/ICOIESE-18.2019.38.
F. Amaliah, I. Kadek, dan D. Nuryana, “Perbandingan Akurasi Metode Lexicon Based Dan Naive Bayes Classifier Pada Analisis Sentimen Pendapat Masyarakat Terhadap Aplikasi Investasi Pada Media Twitter,†Journal of Informatics and Computer Science (JINACS), vol. 3, no. 03, hlm. 384–393, Apr 2022, doi: 10.26740/JINACS.V3N03.P384-393.
M. Analisis Sentimen Makapai Citilink, L. Junaedi, dan A. Sentimen Maskapai Citilink Naïve Bayes, “ANALISIS SENTIMEN MASKAPAI CITILINK PADA TWITTER DENGAN METODE NAÃVE BAYES,†JURNAL ILMIAH INFORMATIKA, vol. 7, no. 02, hlm. 82–86, Okt 2019, doi: 10.33884/JIF.V7I02.1329.
M. Al Khadafi, K. P. Kartika, dan F. Febrinita, “PENERAPAN METODE NAÃVE BAYES CLASSIFIER DAN LEXICON BASED UNTUK ANALISIS SENTIMEN CYBERBULLYING PADA BPJS,†JATI (Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 2, hlm. 725–733, Okt 2022, doi: 10.36040/JATI.V6I2.5633.
S. Suprianto, “Perbandingan Metode Naïve Bayes Classifier Dan Holistic Lexicon Based Dalam Analisis Sentimen Angket Mahasiswa,†JSI: Jurnal Sistem Informasi (E-Journal), vol. 11, no. 2, Okt 2019, doi: 10.18495/JSI.V11I2.9140.
M. Hamka, N. Alfatari, dan D. R. Sari, “Analisis Sentimen Produk Kecantikan Jenis Serum Menggunakan Algoritma Naïve Bayes Classifier,†Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 1, hlm. 64–71, Sep 2022, doi: 10.30865/JSON.V4I1.4740.
S. Afrizal, H. N. Irmanda, N. Falih, dan I. N. Isnainiyah, “Implementasi Metode Naïve Bayes untuk Analisis Sentimen Warga Jakarta Terhadap,†Informatik : Jurnal Ilmu Komputer, vol. 15, no. 3, hlm. 157–166, Agu 2019, doi: 10.52958/IFTK.V15I3.1454.
R. Apriani dkk., “ANALISIS SENTIMEN DENGAN NAÃVE BAYES TERHADAP KOMENTAR APLIKASI TOKOPEDIA,†Jurnal Rekayasa Teknologi Nusa Putra, vol. 6, no. 1, hlm. 54–62, Sep 2019, doi: 10.52005/REKAYASA.V6I1.86.
I. Journal ----of ---- dkk., “ANALISIS SENTIMEN PENGGUNA MEDIA SOSIAL TERHADAP APLIKASI M-HEALTH PEDULI LINDUNGI DENGAN METODE LEXICON BASED DAN NAÃVE BAYES,†Indonesian Journal of Business Intelligence (IJUBI), vol. 6, no. 1, Jun 2023, doi: 10.21927/IJUBI.V6I1.3275.
S. Roiqoh, B. Zaman, dan K. Kartono, “Analisis Sentimen Berbasis Aspek Ulasan Aplikasi Mobile JKN dengan Lexicon Based dan Naïve Bayes,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, hlm. 1582–1592, Jul 2023, doi: 10.30865/MIB.V7I3.6194.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).