Komparasi Algoritma Naïve Bayes dan Logistic Regression Untuk Analisis Sentimen Metaverse

 Bagus Ramadhani (Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia)
 (*)Ryan Randy Suryono Mail (Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia)

(*) Corresponding Author

Submitted: February 2, 2024; Published: April 23, 2024

Abstract

Digital transformation makes the world change rapidly, especially in the development of metaverse technology. The development of metaverse technology has received positive and negative responses from the public, so it is necessary to analyze whether public opinion accepts the development of metaverse technology or vice versa. This research aims to analyze 6728 public comment data regarding the metaverse on social media X using a text mining approach. By comparing text mining algorithm models, this experiment seeks to find the best algorithm for metaverse sentiment analysis, thereby providing insight to industry players involved in metaverse development. This research experiment uses a comparison of two algorithms, namely Naïve Bayes and Logistic Regression. The comparison results for the Naïve Bayes algorithm have an accuracy value of 90% and Logistic Regression of 91%, but the precision, recall, and F1-Score results are low. This indicates that the machine predominantly learns positive sentiment because this sentiment has a majority label, namely 5799 positive sentiment data, while negative sentiment is a minority label with 795 data. To overcome the problem of unbalanced data (Imbalance) in this research, SMOTE optimization was used. The results of SMOTE optimization have a superior value in the Logistic Regression algorithm, the accuracy value of 95% has also increased in the confusion matrix, namely the precision value of 94%, recall of 93%, and F1-Score of 95%. Meanwhile, the Naïve Bayes algorithm has a smaller value, namely 91% accuracy, and the negative sentiment confusion matrix has increased to 87% precision, 97% recall, and 92% F1-Score, so the accuracy and confusion matrix values have better performance.

Keywords


Naïve Bayes; Logistic Regression; Sentiment Analysis; Metaverse; SMOTE

Full Text:

PDF


Article Metrics

Abstract view : 1557 times
PDF - 1069 times

References

G. A. Kaya, “Sentiment Analysis on the Metaverse: Twitter Data,” SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND INFORMATION SCIENCES, vol. 5, no. 2, 2022, doi: 10.35377/saucis.04.01.

B. Yu, Y. Liu, S. Ren, Z. Zhou, and J. Liu, “METAseen: Analyzing network traffic and privacy policies in Web 3.0 based Metaverse,” Digital Communications and Networks, Dec. 2023, doi: 10.1016/j.dcan.2023.11.006.

A. Nur and Y. D. Putra, “MANAJEMEN RISIKO EKONOMI PADA PENERAPAN METAVERSE DI INDONESIA,” 2022.

S. Yang, H. Joo, and J. Kim, “Metaverse search system: Architecture, challenges, and potential applications,” ICT Express, Dec. 2023, doi: 10.1016/j.icte.2023.12.006.

F. F. Rachman and S. Pramana, “Analisis sentimen pro dan kontra masyarakat Indonesia tentang vaksin COVID-19 pada media sosial Twitter,” Indonesian of Health Information Management Journal (INOHIM), vol. 8, no. 2, pp. 100–109, 2020.

R. N. Ikhsani and F. F. Abdulloh, “Optimasi SVM dan Decision Tree Menggunakan SMOTE Untuk Mengklasifikasi Sentimen Masyarakat Mengenai Pinjaman Online,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 4, pp. 1667–1677, 2023.

T. Mustaqim, K. Umam, and M. A. Muslim, “Twitter text mining for sentiment analysis on government’s response to forest fires with vader lexicon polarity detection and k-nearest neighbor algorithm,” J Phys Conf Ser, vol. 1567, no. 3, p. 032024, Jun. 2020, doi: 10.1088/1742-6596/1567/3/032024.

A. F. Watratan and D. Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” Journal of Applied Computer Science and Technology, vol. 1, no. 1, pp. 7–14, 2020.

R. Novendri, A. S. Callista, D. N. Pratama, and C. E. Puspita, “Sentiment Analysis of YouTube Movie Trailer Comments Using Naïve Bayes,” Bulletin of Computer Science and Electrical Engineering, vol. 1, no. 1, pp. 26–32, Jun. 2020, doi: 10.25008/bcsee.v1i1.5.

P. Rajendra and S. Latifi, “Prediction of diabetes using logistic regression and ensemble techniques,” Computer Methods and Programs in Biomedicine Update, vol. 1, p. 100032, 2021, doi: 10.1016/j.cmpbup.2021.100032.

T. Ciu and R. S. Oetama, “Logistic Regression Prediction Model for Cardiovascular Disease,” vol. VII, no. 1, p. 33, 2020, [Online]. Available: https://www.kaggle.com/ronitf/heart-

S. A. Assaidi and F. Amin, “Analisis Sentimen Evaluasi Pembelajaran Tatap Muka 100 Persen pada Pengguna Twitter menggunakan Metode Logistic Regression,” Jurnal Pendidikan Tambusai, vol. 6, no. 2, pp. 13217–13227, 2022.

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput, vol. 8, no. 1, p. 147, 2021.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, p. 650, Jul. 2020, doi: 10.30865/mib.v4i3.2181.

M. R. Ghufron, M. F. M. Arsyada, M. R. Lukman, Y. A. H. Putra, and N. A. Rakhmawati, “Analisis Sentimen Pengguna Twitter Terhadap Pemilu 2024 Berbasis Model XLM-T,” J-INTECH (Journal of Information and Technology), vol. 11, no. 2, pp. 307–315, 2023.

N. M. A. J. Astari, Dewa Gede Hendra Divayana, and Gede Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” Jurnal Sistem dan Informatika (JSI), vol. 15, no. 1, pp. 27–29, Nov. 2020, doi: 10.30864/jsi.v15i1.332.

M. Z. Anbari and B. Sugiantoro, “Studi Komparasi Metode Analisis Sentimen Naïve Bayes, SVM, dan Logistic Regression Pada Piala Dunia 2022,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 2, pp. 688–695, 2023.

D. Gunawan, D. Riana, D. Ardiansyah, F. Akbar, and S. Alfarizi, “Komparasi Algoritma Support Vector Machine Dan Naïve Bayes Dengan Algoritma Genetika Pada Analisis Sentimen Calon Gubernur Jabar 2018-2023”, doi: 10.31294/jtk.v4i2.

T. D. Dikiyanti, A. M. Rukmi, and M. I. Irawan, “Sentiment analysis and topic modeling of BPJS Kesehatan based on twitter crawling data using Indonesian Sentiment Lexicon and Latent Dirichlet Allocation algorithm,” J Phys Conf Ser, vol. 1821, no. 1, p. 012054, Mar. 2021, doi: 10.1088/1742-6596/1821/1/012054.

S. S. Sari, U. K. Ulfa, P. E. P. U. Pradita, and T. S. Tri, “Analisis Sentimen Terhadap Komentar Beauty Shaming Di Media Sosial Twitter Menggunakan Algoritma SentiStrength,” Indonesian Journal of Informatic Research and Software Engineering (IJIRSE), vol. 1, no. 1, pp. 71–78, Apr. 2021, doi: 10.57152/ijirse.v1i1.55.

J. F. Sianipar, Y. R. Ramadhan, and I. Jaelani, “Analisis Sentimen Pembangunan Kereta Cepat Jakarta-Bandung di Media Sosial Twitter Menggunakan Metode Naive Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 1, pp. 360–367, 2023.

I. R. M. R. Prasetyo and A. Musthafa, “Comparison between naive bayes method and support vector machine in sentiment analysis of the relocation of the Indonesian capital,” Jurnal Mantik, vol. 7, no. 1, pp. 185–193, 2023.

S. K. M. P. Fitri Marisa, S. T. M. S. M. M. T. Anastasia Lidya Maukar, and S. S. M. M. S. I. Dr. Tubagus Mohammad Akhriza, Data Mining Konsep Dan Penerapannya. Deepublish, 2021. [Online]. Available: https://books.google.co.id/books?id=BtlVEAAAQBAJ

M. I. Ahmadi, F. Apriani, M. Kurniasari, S. Handayani, and D. Gustian, “Sentiment Analysis Online Shop on the Play Store Using Method Support Vector Machine (Svm),” in Seminar Nasional Informatika (SEMNASIF), 2020, pp. 196–203.

T. Astuti and Y. Astuti, “Analisis Sentimen Review Produk Skincare Dengan Naïve Bayes Classifier Berbasis Particle Swarm Optimization (PSO),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, p. 1806, Oct. 2022, doi: 10.30865/mib.v6i4.4119.

S. Styawati, A. R. Isnain, N. Hendrastuty, and L. Andraini, “Comparison of Support Vector Machine and Naïve Bayes on Twitter Data Sentiment Analysis,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 6, no. 1, pp. 56–60, 2021.

D. N. Fitriana and Y. Sibaroni, “Sentiment analysis on kai twitter post using multiclass support vector machine (svm),” Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 4, no. 5, pp. 846–853, 2020.

D. Apriliani, A. Susanto, M. F. Hidayattullah, and G. W. Sasmito, “Sentimen Analisis Pandangan Masyarakat Terhadap Vaksinasi Covid 19 Menggunakan K-Nearest Neighbors,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 1, pp. 34–37, 2023.

L. Martínez-Villaseñor, O. Herrera-Alcántara, H. Ponce, and F. A. Castro-Espinoza, Advances in Computational Intelligence: 19th Mexican International Conference on Artificial Intelligence, MICAI 2020, Mexico City, Mexico, October 12–17, 2020, Proceedings, Part II. in Lecture Notes in Computer Science. Springer International Publishing, 2020. [Online]. Available: https://books.google.co.id/books?id=b4oBEAAAQBAJ

A. Damayunita, R. S. Fuadi, and C. Juliane, “Comparative Analysis of Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) Algorithms for Classification of Heart Disease Patients,” Jurnal Online Informatika, vol. 7, no. 2, pp. 219–225, Dec. 2022, doi: 10.15575/join.v7i2.919.

I. Rahmawati, T. R. Fitriani, A. No’eman, and A. Y. P. Yusuf, “Analisis Sentimen Menggunakan Algoritma Logistic Regression Pada Penerbangan Lion Air berdasarkan Ulasan Platform Online,” Jurnal Riset Informatika dan Teknologi Informasi, vol. 1, no. 1, pp. 11–16, 2023.

I. Werdiningsih, D. C. R. Novitasari, and D. Z. Haq, Pengelolaan Data Mining dengan Pemrograman Matlab. Airlangga University Press, 2022. [Online]. Available: https://books.google.co.id/books?id=CgOdEAAAQBAJ

S. Masrichah, “Ancaman Dan Peluang Artificial Intelligence (AI),” Khatulistiwa: Jurnal Pendidikan dan Sosial Humaniora, vol. 3, no. 3, pp. 83–101, 2023.

E. S. Priowirjanto, “Urgensi Pengaturan Mengenai Artificial Intelligence Pada Sektor Bisnis Daring Dalam Masa Pandemi Covid-19 di Indonesia,” Jurnal Bina Mulia Hukum, vol. 6, no. 2, pp. 254–272, 2022.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.