Komparasi Algoritma Machine Learning dalam Klasifikasi Kanker Payudara
DOI:
https://doi.org/10.30865/mib.v8i2.7457Keywords:
Breast Cancer, Machine Learning, Class Imbalance, SMOTE, Classification AccuracyAbstract
Every year, millions of women are faced with a serious global health issue: breast cancer. This research aims to improve the efficiency of breast cancer classification using machine learning. One of the main challenges encountered is the imbalance between the number of malignant and benign cases in the dataset. Therefore, this study aims to compare the performance of several machine learning algorithms in classifying breast cancer, such as Decision Tree, Naive Bayes, K-Nearest Neighbors, Logistic Regression, and Random Forest. Preprocessing data, dividing data with various ratios, and testing various classification algorithms are the techniques used in this research. The dataset used originates from the Wisconsin Breast Cancer Diagnosis dataset from the Kaggle platform. The Synthetic Minority Over-Sampling Technique (SMOTE) is used to achieve balance in the proportions of imbalanced classes. After hyperparameter tuning, Logistic Regression showed the best performance with accuracy reaching 100% in several situations. This study concludes that the use of machine learning, especially with techniques for handling class imbalance, can improve the ability to detect breast cancer early. Additionally, this research also helps understand the best algorithms to improve accuracy in classifying breast cancer, providing support for healthcare professionals in early diagnosis, and enhancing the quality of patient care.
References
Organisasi Kesehatan Dunia (World Health Organization), “Breast cancer.†[Online]. Available: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
M. Arnold et al., “Current and future burden of breast cancer: Global statistics for 2020 and 2040,†Breast, vol. 66, no. September, pp. 15–23, 2022, doi: 10.1016/j.breast.2022.08.010.
W. KOUWENAAR, “On cancer incidence in Indonesia.,†Acta Unio Int. Contra Cancrum, vol. 7, no. 1 Spec. No., pp. 61–71, 1951, [Online]. Available: https://gco.iarc.fr/today/data/factsheets/populations/360-indonesia-fact-sheets.pdf
M. Kepala Biro Komunikasi dan Pelayanan Masyarakat drg. Widyawati, “Kanker Payudara Paling Banyak di Indonesia, Kemenkes Targetkan Pemerataan Layanan Kesehatan.†[Online]. Available: https://sehatnegeriku.kemkes.go.id/baca/umum/20220202/1639254/kanker-payudaya-paling-banyak-di-indonesia-kemenkes-targetkan-pemerataan-layanan-kesehatan/
S. Ara, A. Das, and A. Dey, “Malignant and Benign Breast Cancer Classification using Machine Learning Algorithms,†2021 Int. Conf. Artif. Intell. ICAI 2021, pp. 97–101, 2021, doi: 10.1109/ICAI52203.2021.9445249.
S. R. Gupta, “Prediction time of breast cancer tumor recurrence using Machine Learning,†Cancer Treat. Res. Commun., vol. 32, no. July, p. 100602, 2022, doi: 10.1016/j.ctarc.2022.100602.
“American Cancer Society Recommendations for the Early Detection of Breast Cancer,†2023, [Online]. Available: https://www.cancer.org/cancer/types/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html
National Breast Cancer Foundation, “Breast Self-Exam,†2024, [Online]. Available: https://www.nationalbreastcancer.org/breast-self-exam/
M. Javaid, A. Haleem, R. Pratap Singh, R. Suman, and S. Rab, “Significance of machine learning in healthcare: Features, pillars and applications,†Int. J. Intell. Networks, vol. 3, no. May, pp. 58–73, 2022, doi: 10.1016/j.ijin.2022.05.002.
M. Nurkholifah, Jasmarizal, Y. Umar, and Rahmaddeni, “Analisa Performa Algoritma Machine Learning Dalam Prediksi Penyakit Liver,†J. Indones. Manaj. Inform. dan Komun., vol. 4, no. 1, pp. 164–172, 2023, doi: 10.35870/jimik.v4i1.149.
K. M. M. Uddin, N. Biswas, S. T. Rikta, and S. K. Dey, “Machine learning-based diagnosis of breast cancer utilizing feature optimization technique,†Comput. Methods Programs Biomed. Updat., vol. 3, no. February, p. 100098, 2023, doi: 10.1016/j.cmpbup.2023.100098.
K. Kousalya, B. Krishnakumar, C. I. Shanthosh, R. Sharmila, and V. Sneha, “Diagnosis of breast cancer using machine learning algorithms,†Int. J. Adv. Sci. Technol., vol. 29, no. 3 Special Issue, pp. 970–974, 2020.
M. M. Hassan et al., “A comparative assessment of machine learning algorithms with the Least Absolute Shrinkage and Selection Operator for breast cancer detection and prediction,†Decis. Anal. J., vol. 7, no. April, p. 100245, 2023, doi: 10.1016/j.dajour.2023.100245.
V. Birchha and B. Nigam, “Performance Analysis of Averaged Perceptron Machine Learning Classifier for Breast Cancer Detection,†Procedia Comput. Sci., vol. 218, no. 2022, pp. 2181–2190, 2022, doi: 10.1016/j.procs.2023.01.194.
Y. Hendra Kusuma, S. Supraapto, and Y. Setiawan, “Analisis Kepuasan Penumpang pada Maskapai Penerbangan Menggunakan Algoritma C4.5 dan Naïve Bayes,†SENTIMAS Semin. Nas. Penelit. dan Pengabdi. Masy., pp. 162–171, 2022, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas/article/view/320/125
R. Gonzalez, P. Nejat, A. Saha, C. J. V. Campbell, A. P. Norgan, and C. Lokker, “Performance of externally validated machine learning models based on histopathology images for the diagnosis, classification, prognosis, or treatment outcome prediction in female breast cancer: A systematic review,†J. Pathol. Inform., vol. 15, no. August 2023, p. 100348, 2024, doi: 10.1016/j.jpi.2023.100348.
P. Gupta and S. Garg, “Breast Cancer Prediction using varying Parameters of Machine Learning Models,†Procedia Comput. Sci., vol. 171, pp. 593–601, 2020, doi: 10.1016/j.procs.2020.04.064.
E. Gentili et al., “Machine learning from real data: A mental health registry case study,†Comput. Methods Programs Biomed. Updat., vol. 5, no. August 2023, p. 100132, 2023, doi: 10.1016/j.cmpbup.2023.100132.
A. N. Kasanah, M. Muladi, and U. Pujianto, “Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 196–201, 2019, doi: 10.29207/resti.v3i2.945.
R. Resmiati and T. Arifin, “Klasifikasi Pasien Kanker Payudara Menggunakan Metode Support Vector Machine dengan Backward Elimination,†Sistemasi, vol. 10, no. 2, p. 381, 2021, doi: 10.32520/stmsi.v10i2.1238.
J. KUSUMA, B. H. HAYADI, W. WANAYUMINI, and R. ROSNELLY, “Komparasi Metode Multi Layer Perceptron (MLP) dan Support Vector Machine (SVM) untuk Klasifikasi Kanker Payudara,†MIND J., vol. 7, no. 1, pp. 51–60, 2022, doi: 10.26760/mindjournal.v7i1.51-60.
H. Harafani and H. A. Al-Kautsar, “Meningkatkan Kinerja K-Nn Untuk Klasifikasi Kanker Payudara Dengan Forward Selection,†J. Pendidik. Teknol. dan Kejuru., vol. 18, no. 1, p. 99, 2021, doi: 10.23887/jptk-undiksha.v18i1.29905.
A. I. S. Azis, Irma Surya Kumala Idris, Budy Santoso, and Yasin Aril Mustofa, “Pendekatan Machine Learning yang Efisien untuk Prediksi Kanker Payudara,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, pp. 458–469, 2019, doi: 10.29207/resti.v3i3.1347.
M. A. Naji, S. El Filali, K. Aarika, E. H. Benlahmar, R. A. Abdelouhahid, and O. Debauche, “Machine Learning Algorithms for Breast Cancer Prediction and Diagnosis,†Procedia Comput. Sci., vol. 191, pp. 487–492, 2021, doi: 10.1016/j.procs.2021.07.062.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).