Penerapan Data Mining Untuk Pengelompokan Terhadap Kualitas Kinerja Karyawan Dengan Menggunakan Algoritma K-Medoids Clustering
DOI:
https://doi.org/10.30865/mib.v8i2.7445Keywords:
Assessment, Performance, Employee, Data Mining, K-Medoids AlgorithmAbstract
HR management is recognized as a global issue and an integral part of competitiveness in the arena of globalization. The organizational structure is the placement of tasks from the very top to the placement of very basic tasks. Assessing the quality of employee performance is one of the work evaluation sessions that can provide the best for industry and citizens. In position placement, if someone does not suit the position they have, it will cause problems such as the company's operational processes not running well. Performance appraisal of employees aims to see the performance results that have been carried out or given by employees when occupying a position. Problems related to performance appraisal are important problems that must be resolved immediately. Data mining is a data processing process in the past, where data in data mining is a collection of data that has been collected over a certain period of time. Information data mining is a series of processes for exploring added value in the form of data produced by extracting and identifying patterns in an information base. Clustering is a part of data mining that aims to group based on the formation of new clusters. The K-Medoids algorithm is a partitional clustering procedure that minimizes the distance between labeled points. The K-Medoids algorithm is a classic Clustering partition technique that groups data sets of ni objects into k groups known a priori. From the results of research conducted using the K-Medoids method, 3 clusters were obtained. Where in cluster 1 there are 4 employees, in cluster 2 there are 3 employees and in cluster 3 there are 3 employees.
References
J. Faran and A. Triayudi, “Penerapan Algoritma K-Means Data Mining untuk Clustering Kinerja Karyawan Koperasi,†KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 4, pp. 2096–2108, 2024, doi: 10.30865/klik.v4i4.1728.
A. N. Z. Hidayah and A. F. Rozi, “Penerapan Data Mining Dalam Menentukan Kinerja Karyawan Terbaik Dengan Menggunakan Metode Algoritma C4.5 (Studi Kasus: Universitas Mercu Buana Yogyakarta),†J. Inf. Syst. Artif. Intell., vol. 1, no. 2, pp. 117–127, 2021.
A. Karim, “Implementation of the Multi-Objective Optimization Method on the Basic of Ratio Analysis ( MOORA ) and Entropy Weighting in New Employee Recruitment,†vol. 5, no. 2, pp. 704–712, 2024, doi: 10.47065/josh.v5i2.4859.
A. Karim, S. Esabella, M. A. Hanafiah, and ..., “Sistem Pakar Deteksi Penyakit Otitis dengan Perbandingan Metode Certainty Factor, Teorema Bayes, dan Dempster Shafer,†J. Media …, vol. 7, pp. 2003–2013, 2023, doi: 10.30865/mib.v7i4.6595.
S. Regina, E. Sutinah, and N. Agustina, “Clustering Kualitas Kinerja Karyawan Pada Perusahaan Bahan Kimia Menggunakan Algoritma K-Means,†J. Media Inform. Budidarma, vol. 5, no. 2, p. 573, 2021, doi: 10.30865/mib.v5i2.2909.
G. B. Kaligis and S. Yulianto, “Analisa Perbandingan Algoritma K-Means, K-Medoids, Dan X-Means Untuk Pengelompokkan Kinerja Pegawai,†IT-Explore J. Penerapan Teknol. Inf. dan Komun., vol. 1, no. 3, pp. 179–193, 2022, doi: 10.24246/itexplore.v1i3.2022.pp179-193.
Hijrah, Maulidar, and Adria, “Analisis Perbandingan Aplikasi Data Mining Dalam Memprediksi Kualitas Kinerja Karyawan Menggunakan Metode Algoritma C4.5,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 1655–1665, 2022, doi: 10.35957/jatisi.v9i2.1992.
B. Haya Pangestu, “Data Mining Menggunakan Algoritma Naïve Bayes Classifier Untuk Evaluasi Kinerja Karyawan,†J. Ris. Mat., pp. 177–184, 2023, doi: 10.29313/jrm.v3i2.2837.
W. Purba, W. Siawin, and . H., “Implementasi Data Mining Untuk Pengelompokkan Dan Prediksi Karyawan Yang Berpotensi Phk Dengan Algoritma K-Means Clustering,†J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 2, no. 2, pp. 85–90, 2019, doi: 10.34012/jusikom.v2i2.429.
W. Lidysari, H. S. Tambunan, and H. Qurniawan, “Penerapan Data Mining Dalam Menentukan Kelayakan Penerima Bantuan Sosial Pemko Dengan Algoritma C4.5 (Kasus Kantor Kelurahan Martoba),†Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 3, no. 1, pp. 53–61, 2022, doi: 10.30645/kesatria.v3i1.97.
S. Sunarti, “Prediksi Promosi Jabatan Karyawan Dengan Algoritma C4.5 (Studi Kasus: Apartemen Senayan Jakarta),†Techno.Com, vol. 18, no. 4, pp. 288–298, 2019, doi: 10.33633/tc.v18i4.2471.
M. Veronica, H. Effendi, and A. Oktafian Saleh, “Clustering Tingkat Kedisiplinan Pegawai Pada Pengadilan Tinggi Palembang Menggunakan Algoritma K-Means,†in SEMINAR NASIONAL CORISINDO, 2023, pp. 261–266.
W. Ishak Marzuki, H. Latipa Sari, and Yupianti, “Clustering Kualitas Kinerja Pegawai Pemerintah Dengan Perjanjian Kerja Pada Dinas Pekerjaan,†J. Media Infotama, vol. 19, no. 2, p. 401, 2023.
N. Rakhmawaty, N. Y. Nasution, and F. D. T. Amijaya, “Perbandingan Metode K-Means Dan Metode Fuzzy C-Means (FCM) Pada Analisis Kinerja Pegawai PT. Cemara Khatulistiwa Persada Bontang,†J. EKSPONENSIAL, vol. 13, no. 1, pp. 63–71, 2022.
I. Reisandi, D. Daryana, F. Sri Mulyati, and M. Fauzi, “Implementasi Clustering K-Means Terhadap Penilaian Kinerja Karyawan PT. XYZ,†J. Sos. Teknol., vol. 1, no. 8, pp. 757–767, 2021, doi: 10.36418/jurnalsostech.v1i8.162.
I. Melani, B. Priyatna, F. Nurapriani, and S. S. Hilabi, “Implementasi Metode K-Means Clustering Pada Penilaian Kinerja Karyawan PT Kopetri Citra Abadi,†J. Inf. Interaktif, vol. 8, no. 1, pp. 24–30, 2023.
R. K. Purba and E. Bu’ulolo, “Implementasi Algoritma K-Medoids dalam Pengelompokan Mahasiswa yang Layak Mendapat Bantuan Uang Kuliah Tunggal,†INSOLOGI J. Sains dan Teknol., vol. 1, no. 2, pp. 79–86, 2022, doi: 10.55123/insologi.v1i2.195.
N. Arief, I. Sudahri Damanik, and E. Irawan, “Penerapan Algoritma K- Medoids Dalam Mengelompokkan Tingkat Kasus Kejahatan Di Setiap Provinsi,†KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 3, pp. 111–116, 2021.
L. Agustini, Sumarno, and I. O. Kirana, “Pengelompokan Data Janjang Panen Kelapa Sawit Menggunakan Algoritma K-Medoids Pada PT SIR MANDAU,†J. Mach. Learn. Data Anal., vol. 01, no. 01, pp. 36–44, 2022.
H. Pohan, M. Zarlis, E. Irawan, H. Okprana, and Y. Pranayama, “Penerapan Algoritma K-Medoids dalam Pengelompokan Balita Stunting di Indonesia,†JUKI J. Komput. dan Inform., vol. 3, no. 2, pp. 97–104, 2021, doi: 10.53842/juki.v3i2.69.
U. R. Amanda and D. P. Utomo, “Penerapan Data Mining Algoritma Hash Based Pada Data Pemesanan Buah Impor Cv. Green Uni Fruit,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 5, no. 1, 2021.
D. P. Indini, S. R. Siburian, Nurhasanah, and D. P. Utomo, “Implementasi Algoritma DBSCAN untuk Clustering Seleksi Penentuan Mahasiswa yang Berhak Menerima Beasiswa Yayasan,†in Prosiding Seminar Nasional Sosial, Humaniora, dan Teknologi, 2022, pp. 325–331.
D. P. Indini, Mesran, and Dito Putro Utomo, “Penerapan Data Mining Dalam Pengelompokan Data Reseller di Telkomsel Authorized Partner (TAP) Deli Tua Dengan Algoritma K-Means,†J. Ilm. Media Sisfo, vol. 17, no. 2, pp. 189–202, 2023, doi: 10.33998/mediasisfo.2023.17.2.1391.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).