Perbandingan Kernel Polynomial dan RBF Pada Algoritma SVM Untuk Analisis Sentimen Skincare di Indonesia

Vinsensius Dendi Yunanda, Nirwana Hendrastuty

Abstract


Skincare is considered a crucial need in maintaining and caring for skin health, given its role not only in cosmetics but also in contributing to the well-being and protection of the skin from external factors. Sentiment analysis of skincare reviews on social media helps understand consumer perspectives, guiding skincare manufacturers in product improvement. The comparison of polynomial and RBF kernels in SVM is relevant to enhance sentiment analysis of skincare in Indonesia, ensuring the model's accuracy in classifying product sentiments. The dataset used consists of 2168 data obtained through social media scraping. After obtaining the data, text preprocessing processes such as case folding, cleaning, tokenization, stemming, and data labeling were performed. The data was divided into an 80:20 ratio for comparison, with 1734 training data and 434 testing data. The accuracy results using the SVM method with RBF and Polynomial kernels were obtained, with the highest accuracy found in the RBF kernel at 86,17%, and the polynomial kernel achieving an accuracy result of 84,56%.

Keywords


Skincare; Preprocessing; Support Vector Machine; Twitter; RBF; Polynomial

Full Text:

PDF

References


Irbah salsabila and Yuliant Sibaroni, “Multi Aspect Sentiment of Beauty Product Reviews using SVM and Semantic Similarity,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 520–526, 2021, doi: 10.29207/resti.v5i3.3078.

K. S. Putri, I. R. Setiawan, and A. Pambudi, “Analisis Sentimen Terhadap Brand Skincare Lokal Menggunakan Naïve Bayes Classifier,†Technol. J. Ilm., vol. 14, no. 3, p. 227, 2023, doi: 10.31602/tji.v14i3.11259.

D. Marlina, T. Basuki Kurniawan, M. Zaki Zakaria, S. Farahnasihah binti Abdullah, J. Farmasi, and P. Kesehatan Kemenkes Palembang, “Sentiment Analysis on Natural Skincare Products,†J. Data Sci., vol. 2022, no. August, p. 12, 2022, [Online]. Available: http://ipublishing.intimal.edu.my/jods.html

A. P. Nardilasari, A. L. Hananto, S. S. Hilabi, T. Tukino, and B. Priyatna, “Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter,†JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 8, no. 1, p. 11, 2023, doi: 10.31328/jointecs.v8i1.4265.

N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,†vol. 6, no. 3, 2021.

M. H. Wicaksono, M. D. Purbolaksono, and S. Al Faraby, “Perbandingan Algoritma Machine Learning untuk Analisis Sentimen Berbasis Aspek pada Review Female Daily,†eProceedings Eng., vol. 10, no. 3, pp. 3591–3600, 2023, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/20631/19944%0Ahttps://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/20631

W. W. Kamal, “Analisis Sentimen Ulasan Produk Skincare Menggunakan Metode Support Vector Machine (Studi Kasus: Forum Female Daily),†p. 65, 2021.

X. Wang, Z. Yan, Y. Zeng, X. Liu, X. Peng, and H. Yuan, “Research on correlation factor analysis and prediction method of overhead transmission line defect state based on association rule mining and RBF-SVM,†Energy Reports, vol. 7, pp. 359–368, 2021, doi: 10.1016/j.egyr.2021.01.058.

T. M. Permata Aulia, N. Arifin, and R. Mayasari, “Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19,†SINTECH (Science Inf. Technol. J., vol. 4, no. 2, pp. 139–145, 2021, doi: 10.31598/sintechjournal.v4i2.762.

S. Rabbani, D. Safitri, N. Rahmadhani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM: Comparative Evaluation of SVM Kernels for Sentiment Classification in Fuel Price Increase Analysis,†MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 153–160, 2023.

S. Styawati, A. R. Isnain, N. Hendrastuty, and L. Andraini, “Comparison of Support Vector Machine and Naïve Bayes on Twitter Data Sentiment Analysis,†J. Inform. J. Pengemb. IT, vol. 6, no. 1, pp. 56–60, 2021, doi: 10.30591/jpit.v6i1.3245.

T. Safitri, Y. Umaidah, and I. Maulana, “Analisis Sentimen Pengguna Twitter Terhadap Grup Musik BTS Menggunakan Algoritma Support Vector Machine,†J. Appl. Informatics Comput., vol. 7, no. 1, pp. 28–35, 2023, doi: 10.30871/jaic.v7i1.5039.

A. F. Rochim, K. Widyaningrum, and D. Eridani, “Performance Comparison of Support Vector Machine Kernel Functions in Classifying COVID-19 Sentiment,†2021 4th Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2021, pp. 224–228, 2021, doi: 10.1109/ISRITI54043.2021.9702845.

H. Saputra, “Analisis Sentimen Pada Vaksin Booster Menggunakan Algoritma Support Vector Machine Multiclass Di Twitter,†vol. 3, no. 10, pp. 1–26, 2023.

B. Rais, S. Suhardi, and R. P. I. P. Sari, “Critical Discourse Analysis of Additional Information in Skincare Products,†Eralingua J. Pendidik. Bhs. Asing dan Sastra, vol. 4, no. 1, p. 89, 2020, doi: 10.26858/eralingua.v4i1.12519.

C. F. Hasri and D. Alita, “Penerapan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,†J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 145–160, 2022.

P. Fremmuzar and A. Baita, “Uji Kernel SVM dalam Analisis Sentimen Terhadap Layanan Telkomsel di Media Sosial Twitter,†Komputika J. Sist. Komput., vol. 12, no. 2, pp. 57–66, 2023, doi: 10.34010/komputika.v12i2.9460.

T. A. Dewi and E. Mailoa, “Perbandingan Implementasi Metode Smote Pada Algoritma Support Vector Machine (Svm) Dalam Analisis Sentimen Opini Masyarakat Tentang Mixue,†J. Indones. Manaj. Inform. dan Komun., vol. 4, no. 3, pp. 849–855, 2023, doi: 10.35870/jimik.v4i3.289.

S. Rabbani, D. Safitri, N. Rahmadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,†MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 153–160, 2023, doi: 10.57152/malcom.v3i2.897.

N. S. Ramadhanti, W. A. Kusuma, and A. Annisa, “Optimasi Data Tidak Seimbang pada Interaksi Drug Target dengan Sampling dan Ensemble Support Vector Machine,†J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, p. 1221, 2020, doi: 10.25126/jtiik.2020762857.

A. A. Aldino, R. R. Suryono, and R. Ambarwati, “Analysis of Covid-19 Cash Direct Aid (BLT) Acceptance Using K-Nearest Neighbor Algorithm,†IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 2, p. 193, Apr. 2022, doi: 10.22146/ijccs.70801.

I. Aida Sapitri and M. Fikry, “Pengklasifikasian Sentimen Ulasan Aplikasi Whatsapp Pada Google Play Store Menggunakan Support Vector Machine,†J. TEKINKOM, vol. 6, no. 1, pp. 1–7, 2023, doi: 10.37600/tekinkom.v6i1.773.

A. A. Munandar, F. Farikhin, and C. E. Widodo, “Sentimen Analisis Aplikasi Belajar Online Menggunakan Klasifikasi SVM,†JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 8, no. 2, p. 77, 2023, doi: 10.31328/jointecs.v8i2.4747.




DOI: https://doi.org/10.30865/mib.v8i2.7425

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.