Pengelompokan Siswa Layak Penerima Beasiswa dengan Menerapkan Algoritma K-Means Clustering Data Mining
DOI:
https://doi.org/10.30865/mib.v8i2.7394Keywords:
Grouping, Student, Recipient, Scholarship, Data Mining, K-Means AlgorithmAbstract
Scholarships are financial assistance given to individuals with the aim of assisting them in financing the education they are pursuing. To overcome the gap between upper middle economic communities and lower middle economic communities in obtaining quality education. The aim of this program is to provide opportunities for financially disadvantaged students to experience quality education. In the process that occurs in awarding scholarships, there should be a strong basic foundation in the process of determining and making decisions that occur. Where the process of providing scholarships carried out so far should not be given to students who truly deserve it. The problem or impact that occurs from this is that the scholarship program does not run in accordance with the program's objectives, namely helping in the economic gap for students. One way that can be used to resolve this problem is to review previous recipient data. Data mining is a process of re-excavating data. Excavation is carried out by reviewing all the information contained in the data. In this research, the cluster analysis method is used, which is a multivariate technique used to group objects based on their characteristics. Clustering is the process of grouping data. Where the grouping process carried out on data is a grouping that does not yet have a class target or is called unsupervised learning. The results obtained in the research show that there are 2 clusters from the application of the K-Means algorithm. In cluster 1 there are 6 students in it and in cluster 2 there are 4 students in it.References
I. Arfyanti, M. Fahmi, and P. Adytia, “Penerapan Algoritma Decision Tree Untuk Penentuan Pola Penerima Beasiswa KIP Kuliah,†Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1196–1201, 2022, doi: 10.47065/bits.v4i3.2275.
W. Ningsih, B. Budiman, and I. Umami, “Implementasi Algoritma Naïve Bayes Untuk Menentukan Calon Penerima Beasiswa Di SMK YPM 14 Sumobito Jombang,†J. Teknol. Dan Sist. Inf. Bisnis, vol. 4, no. 2, pp. 446–454, 2022, doi: 10.47233/jteksis.v4i2.570.
M. Riyyan and H. Firdaus, “PERBANDINGAN ALGORITME NAÃÂVE BAYES DAN KNN TERHADAP DATA PENERIMAAN BEASISWA (Studi Kasus Lembaga Beasiswa Baznas Jabar),†J. Inform. dan Rekayasa Elektron., vol. 5, no. 1, pp. 1–10, 2022, doi: 10.36595/jire.v5i1.547.
A. S. Suweleh, D. Susilowati, and U. Bumigora, “Aplikasi Penentuan Penerima Beasiswa Menggunakan Algoritma C4.5,†J. BITe, vol. 2, no. 1, pp. 12–21, 2020, doi: 10.30812/bite.v2i1.798.
D. P. Indini, S. R. Siburian, Nurhasanah, and D. P. Utomo, “Implementasi Algoritma DBSCAN untuk Clustering Seleksi Penentuan Mahasiswa yang Berhak Menerima Beasiswa Yayasan,†in Prosiding Seminar Nasional Sosial, Humaniora, dan Teknologi, 2022, pp. 325–331.
A. Sumiah and N. Mirantika, “Perbandingan Metode K-Nearest Neighbor dan Naive Bayes untuk Rekomendasi Penentuan Mahasiswa Penerima Beasiswa pada Universitas Kuningan,†Buffer Inform., vol. 6, no. 1, pp. 1–10, 2020.
K. Khotimah, “Teknik Data Mining menggunakan Algoritma Decision Tree (C4.5) untuk Prediksi Seleksi Beasiswa Jalur KIP pada Universitas Muhammadiyah Kotabumi,†J. SIMADA (Sistem Inf. dan Manaj. Basis Data), vol. 4, no. 2, pp. 145–152, 2022, doi: 10.30873/simada.v4i2.3064.
B. Baskoro, S. Sriyanto, and L. S. Rini, “Prediksi Penerima Beasiswa dengan Menggunakan Teknik Data Mining di Universitas Muhammadiyah Pringsewu,†Pros. Semin. Nas. Darmajaya, vol. 1, no. 0, pp. 87–94, 2021, [Online]. Available: https://jurnal.darmajaya.ac.id/index.php/PSND/article/view/2918.
D. P. Utomo and S. Aripin, “Penerapan Algoritma C5. 0 Untuk Mengetahui Pola Kepuasan Mahasiswa di Masa Pembelajaran Daring,†in Prosiding Seminar Nasional Riset Information Science (SENARIS), 2021, pp. 7–12.
D. P. Utomo, P. Sirait, and R. Yunis, “Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5. 0,†J. Media Inform. Budidarma, vol. 4, no. 4, pp. 994–1006, 2020, doi: 10.30865/mib.v4i4.2355.
F. Telaumbanua, J. M. Purba, and D. P. Utomo, “Analysis of Online Learning Understanding Patterns at Budi Darma University Using the C5. 0 Algorithm,†IJICS (International J. Informatics Comput. Sci., vol. 5, no. 2, 2021.
A. A. Argasah and D. Gustian, “Data Mining Analysis To Determine Employee Salaries According To Needs Based on the K-Medoids Clustering Algorithm,†J. Tek. Inform., vol. 3, no. 1, pp. 29–36, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.1.154.
S. Ramadhani, D. Azzahra, and T. Z, “Comparison of K-Means and K-Medoids Algorithms in Text Mining based on Davies Bouldin Index Testing for Classification of Student’s Thesis,†Digit. Zo. J. Teknol. Inf. dan Komun., vol. 13, no. 1, pp. 24–33, 2022, doi: 10.31849/digitalzone.v13i1.9292.
D. A. Juliantho and B. Hendrik, “Komparasi Algoritma K-Means Dan K-Medoids Dalam Clustering Penyebaran Kasus Covid 19,†Jised J. Inf. Syst. Educ. Dev., vol. 1, no. 2, pp. 30–32, 2023.
D. Hastari, F. Nurunnisa, S. Winanda, and D. Dwi Aprillia, “Penerapan Algoritma K-Means dan K-Medoids untuk MengelompokkanData Negara Berdasarkan Faktor Sosial-Ekonomi dan Kesehatan,†SENTIMAS Semin. Nas. Penelit. dan Pengabdi. Masy., pp. 274–281, 2023, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas.
N. T. Luchia, H. Handayani, F. S. Hamdi, D. Erlangga, and S. F. Octavia, “Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia,†MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 2, pp. 35–41, 2022, doi: 10.57152/malcom.v2i2.422.
M. Herviany, S. Putri Delima, T. Nurhidayah, and K. Kasini, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokkan Daerah Rawan Tanah Longsor Pada Provinsi Jawa Barat,†MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 34–40, 2021, doi: 10.57152/malcom.v1i1.60.
R. Novianto and L. Goeirmanto, “Penerapan Data Mining menggunakan Algoritma K-Means Clustering untuk Menganalisa Bisnis Perusahaan Asuransi,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 6, no. 1, pp. 85–95, 2019, doi: 10.35957/jatisi.v6i1.150.
Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,†J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.
E. Ramadanti and M. Muslih, “Penerapan Data Mining Algoritma K-Means Clustering Pada Populasi Ayam Petelur Di Indonesia,†Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 1, pp. 1–7, 2022, doi: 10.36341/rabit.v7i1.2155.
C. S. D. B. Sembiring, L. Hanum, and S. P. Tamba, “Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Menentukan Judul Skripsi Dan Jurnal Penelitian (Studi Kasus Ftik Unpri),†J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 80–85, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2393.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).