Pengelompokan Siswa Layak Penerima Beasiswa dengan Menerapkan Algoritma K-Means Clustering Data Mining

 (*)Bartolomius Harpad Mail (STMIK Widya Cipta Dharma, Samarinda, Indonesia)
 Muhammad Fahmi (STMIK Widya Cipta Dharma, Samarinda, Indonesia)
 Pajar Pahrudin (STMIK Widya Cipta Dharma, Samarinda, Indonesia)
 Reza Andrea (Politeknik Pertanian Negeri Samarinda, Samarinda, Indonesia)

(*) Corresponding Author

Submitted: January 24, 2024; Published: April 30, 2024

Abstract

Scholarships are financial assistance given to individuals with the aim of assisting them in financing the education they are pursuing. To overcome the gap between upper middle economic communities and lower middle economic communities in obtaining quality education. The aim of this program is to provide opportunities for financially disadvantaged students to experience quality education. In the process that occurs in awarding scholarships, there should be a strong basic foundation in the process of determining and making decisions that occur. Where the process of providing scholarships carried out so far should not be given to students who truly deserve it. The problem or impact that occurs from this is that the scholarship program does not run in accordance with the program's objectives, namely helping in the economic gap for students. One way that can be used to resolve this problem is to review previous recipient data. Data mining is a process of re-excavating data. Excavation is carried out by reviewing all the information contained in the data. In this research, the cluster analysis method is used, which is a multivariate technique used to group objects based on their characteristics. Clustering is the process of grouping data. Where the grouping process carried out on data is a grouping that does not yet have a class target or is called unsupervised learning. The results obtained in the research show that there are 2 clusters from the application of the K-Means algorithm. In cluster 1 there are 6 students in it and in cluster 2 there are 4 students in it.

Keywords


Grouping; Student; Recipient; Scholarship; Data Mining; K-Means Algorithm

Full Text:

PDF


Article Metrics

Abstract view : 330 times
PDF - 193 times

References

I. Arfyanti, M. Fahmi, and P. Adytia, “Penerapan Algoritma Decision Tree Untuk Penentuan Pola Penerima Beasiswa KIP Kuliah,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1196–1201, 2022, doi: 10.47065/bits.v4i3.2275.

W. Ningsih, B. Budiman, and I. Umami, “Implementasi Algoritma Naïve Bayes Untuk Menentukan Calon Penerima Beasiswa Di SMK YPM 14 Sumobito Jombang,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 4, no. 2, pp. 446–454, 2022, doi: 10.47233/jteksis.v4i2.570.

M. Riyyan and H. Firdaus, “PERBANDINGAN ALGORITME NAÃVE BAYES DAN KNN TERHADAP DATA PENERIMAAN BEASISWA (Studi Kasus Lembaga Beasiswa Baznas Jabar),” J. Inform. dan Rekayasa Elektron., vol. 5, no. 1, pp. 1–10, 2022, doi: 10.36595/jire.v5i1.547.

A. S. Suweleh, D. Susilowati, and U. Bumigora, “Aplikasi Penentuan Penerima Beasiswa Menggunakan Algoritma C4.5,” J. BITe, vol. 2, no. 1, pp. 12–21, 2020, doi: 10.30812/bite.v2i1.798.

D. P. Indini, S. R. Siburian, Nurhasanah, and D. P. Utomo, “Implementasi Algoritma DBSCAN untuk Clustering Seleksi Penentuan Mahasiswa yang Berhak Menerima Beasiswa Yayasan,” in Prosiding Seminar Nasional Sosial, Humaniora, dan Teknologi, 2022, pp. 325–331.

A. Sumiah and N. Mirantika, “Perbandingan Metode K-Nearest Neighbor dan Naive Bayes untuk Rekomendasi Penentuan Mahasiswa Penerima Beasiswa pada Universitas Kuningan,” Buffer Inform., vol. 6, no. 1, pp. 1–10, 2020.

K. Khotimah, “Teknik Data Mining menggunakan Algoritma Decision Tree (C4.5) untuk Prediksi Seleksi Beasiswa Jalur KIP pada Universitas Muhammadiyah Kotabumi,” J. SIMADA (Sistem Inf. dan Manaj. Basis Data), vol. 4, no. 2, pp. 145–152, 2022, doi: 10.30873/simada.v4i2.3064.

B. Baskoro, S. Sriyanto, and L. S. Rini, “Prediksi Penerima Beasiswa dengan Menggunakan Teknik Data Mining di Universitas Muhammadiyah Pringsewu,” Pros. Semin. Nas. Darmajaya, vol. 1, no. 0, pp. 87–94, 2021, [Online]. Available: https://jurnal.darmajaya.ac.id/index.php/PSND/article/view/2918.

D. P. Utomo and S. Aripin, “Penerapan Algoritma C5. 0 Untuk Mengetahui Pola Kepuasan Mahasiswa di Masa Pembelajaran Daring,” in Prosiding Seminar Nasional Riset Information Science (SENARIS), 2021, pp. 7–12.

D. P. Utomo, P. Sirait, and R. Yunis, “Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5. 0,” J. Media Inform. Budidarma, vol. 4, no. 4, pp. 994–1006, 2020, doi: 10.30865/mib.v4i4.2355.

F. Telaumbanua, J. M. Purba, and D. P. Utomo, “Analysis of Online Learning Understanding Patterns at Budi Darma University Using the C5. 0 Algorithm,” IJICS (International J. Informatics Comput. Sci., vol. 5, no. 2, 2021.

A. A. Argasah and D. Gustian, “Data Mining Analysis To Determine Employee Salaries According To Needs Based on the K-Medoids Clustering Algorithm,” J. Tek. Inform., vol. 3, no. 1, pp. 29–36, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.1.154.

S. Ramadhani, D. Azzahra, and T. Z, “Comparison of K-Means and K-Medoids Algorithms in Text Mining based on Davies Bouldin Index Testing for Classification of Student’s Thesis,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 13, no. 1, pp. 24–33, 2022, doi: 10.31849/digitalzone.v13i1.9292.

D. A. Juliantho and B. Hendrik, “Komparasi Algoritma K-Means Dan K-Medoids Dalam Clustering Penyebaran Kasus Covid 19,” Jised J. Inf. Syst. Educ. Dev., vol. 1, no. 2, pp. 30–32, 2023.

D. Hastari, F. Nurunnisa, S. Winanda, and D. Dwi Aprillia, “Penerapan Algoritma K-Means dan K-Medoids untuk MengelompokkanData Negara Berdasarkan Faktor Sosial-Ekonomi dan Kesehatan,” SENTIMAS Semin. Nas. Penelit. dan Pengabdi. Masy., pp. 274–281, 2023, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas.

N. T. Luchia, H. Handayani, F. S. Hamdi, D. Erlangga, and S. F. Octavia, “Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 2, pp. 35–41, 2022, doi: 10.57152/malcom.v2i2.422.

M. Herviany, S. Putri Delima, T. Nurhidayah, and K. Kasini, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokkan Daerah Rawan Tanah Longsor Pada Provinsi Jawa Barat,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 34–40, 2021, doi: 10.57152/malcom.v1i1.60.

R. Novianto and L. Goeirmanto, “Penerapan Data Mining menggunakan Algoritma K-Means Clustering untuk Menganalisa Bisnis Perusahaan Asuransi,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 6, no. 1, pp. 85–95, 2019, doi: 10.35957/jatisi.v6i1.150.

Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.

E. Ramadanti and M. Muslih, “Penerapan Data Mining Algoritma K-Means Clustering Pada Populasi Ayam Petelur Di Indonesia,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 1, pp. 1–7, 2022, doi: 10.36341/rabit.v7i1.2155.

C. S. D. B. Sembiring, L. Hanum, and S. P. Tamba, “Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Menentukan Judul Skripsi Dan Jurnal Penelitian (Studi Kasus Ftik Unpri),” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 80–85, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2393.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.