Analisis Sentimen Pengguna Aplikasi Instagram Pada Situs Google Play Menggunakan Metode Naïve Bayes
DOI:
https://doi.org/10.30865/mib.v8i2.7388Keywords:
Instagram, Naïve Bayes, Google Play, Application, AnalysisAbstract
Instagram is an application that is widely used by students because it is easy to use and information is easy to get. Instagram has features that allow you to send photos and videos with unique designs, making it an interesting learning medium. In 2023 the Instagram app has managed to achieve more than 5M downloads on the Google Play Store platform and obtained a rating of 4.2. In some situations, there may be a discrepancy between the rating given and the actual review content. In the app development process, it is important for developers to not only pay attention to the number of ratings, but also understand the views and opinions of users. Therefore, developers need to have the ability to analyze each opinion given by users. One approach that can be used is through sentiment analysis using the Naïve Bayes algorithm. The data used is Instagram app reviews, with positive reviews and negative reviews. This analysis produces the best performance with accuracy 78,85%, precision 78,85%, recall 100% and f1-score 88,17% values.
References
M. Raffi, A. Suharso, and I. Maulana, “Analisis Sentimen Ulasan Aplikasi Binar Pada Google Play Store Menggunakan Algoritma Naïve Bayes Sentiment Analysis of Binar Application Reviews on Google Play Store Using Naïve Bayes Algorithm,†J. Inf. Technol. Comput. Sci., vol. 6, no. 1, pp. 1–7, 2023.
A. Nurian, M. S. Ma’arif, I. N. Amalia, and C. Rozikin, “Analisis Sentimen Pengguna Aplikasi Shopee Pada Situs Google Play Menggunakan Naive Bayes Classifier,†J. Inform. dan Tek. Elektro Terap., vol. 12, no. 1, 2024, doi: 10.23960/jitet.v12i1.3631.
A. Karim, “Analisis Sentimen Pada Komentar Sosial Media Instagram Layanan Kesehatan BPJS Menggunkanan Naive Bayes Classifier,†Skripsi, vol. 5, no. 3, pp. 248–253, 2020.
Z. Ambarsari, “Penggunaan Instagram Sebagai Media Pembelajaran Bahasa dan Sastra Indonesia Pada Era 4.0,†Pros. Semin. Nas. PBSI-III Tahun 2020, pp. 81–86, 2020, [Online]. Available: http://digilib.unimed.ac.id/41225/1/Fulltext.pdf
D. A. Efraim, “Analisis Sentimen Pada Sosial Media Instagram Menggunakan Algoritma Naive Bayes ( Studi Kasus : Timnas Futsal Indonesia ),†no. April 2012, pp. 498–509, 2023.
S. W. Iriananda, R. P. Putra, and K. S. Nugroho, “Analisis Sentimen Dan Analisis Data Eksploratif Ulasan Aplikasi Marketplace Google Playstore,†4th Conf. Innov. Appl. Sci. Technol. (CIASTECH 2021), no. Ciastech, pp. 473–482, 2021.
Dedi Darwis, Nery Siskawati, and Zaenal Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,†J. TEKNO KOMPAK, vol. 15, no. 1, pp. 131–145, 2020.
K. Anwar, “Analisa sentimen Pengguna Instagram Di Indonesia Pada Review Smartphone Menggunakan Naive Bayes,†KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 4, pp. 148–155, 2022, doi: 10.30865/klik.v2i4.315.
D. S. Sayogo et al., “ANALISIS SENTIMEN ULASAN INSTAGRAM DI GOOGLE PLAY STORE,†vol. 7, no. 6, pp. 3314–3319, 2023.
M. K. Khoirul Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,†JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023, doi: 10.36040/jati.v7i1.6373.
A. Nurian, “Analisis Sentimen Ulasan Pengguna Aplikasi Google Play Menggunakan Naïve Bayes,†J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3s1, pp. 829–835, 2023, doi: 10.23960/jitet.v11i3s1.3348.
H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,†J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.500.
S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,†J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.
Syafii Imam Muhamad, “Sentimen Analisis Pada Media Sosial Menggunakan Metode Naive Bayes Classifier (Nbc),†Teknologipintar.org, vol. 3, no. 2, p. 1, 2023.
M. Y. Helmy, Kushartantya, and N. Bahtiar, “Implementasi Data Mining untuk Memprediksi Kelayakan Permintaan Pinjaman Nasabah di Lembaga Keuangan ( Studi Kasus di Koperasi Simpan Pinjam Jasa Kota Pekalongan),†J. Informatics Technol., vol. 2, no. 1, pp. 33–42, 2013.
B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,†J. Edukasi dan Penelit. Inform., vol. 4, no. 2, p. 113, 2018, doi: 10.26418/jp.v4i2.27526.
D. A. Alzahra, U. Enri, and Y. U. Maidah, “Analisis Sentimen Ulasan Pengguna Klik Indomaret Pada Google Play Menggunakan Support Vector Machine,†Innov. J. Soc. Sci. Res., vol. 3, pp. 2173–2185, 2023.
H. Sulastri and A. I. Gufroni, “Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia,†J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 299–305, 2017, doi: 10.25077/teknosi.v3i2.2017.299-305.
M. N. Akbar and Nirwana Samrin, “Analisis Sentimen Komentar Pengguna Aplikasi Threads Pada Google Playstore Menggunakan Algoritma Multinominal Naive Bayes Classfier,†AGENTS J. Artif. Intell. Data Sci., vol. 3, no. 2, pp. 21–29, 2023, doi: 10.24252/jagti.v3i2.67.
D. Iskandar and Y. K. Suprapto, “Perbandingan Akurasi Klasifikasi Tingkat,†Netw. Eng. Res. Oper., vol. 2, no. 1, pp. 37–43, 2015, [Online]. Available: http://nero.trunojoyo.ac.id/index.php/nero/article/view/42
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).