Data Mining Using Support Vector Machine Model for Baturraden Tourism Visitor Satisfaction Prediction
DOI:
https://doi.org/10.30865/mib.v8i2.7346Keywords:
Baturraden, Tour, Support Vector Machine, Level Of Accuracy, User ReviewsAbstract
The tourism industry is a significant economic sector and a driver of local and national economic growth. Tourism not only contributes economically, but also plays an important role in introducing and preserving the cultural and natural wealth of an area. One of them is Baturraden tourism, a tourist destination located in Indonesia is experiencing a rapid increase in the number of tourist visits. Baturraden is a tourist destination located in the highlands at the foot of Mount Slamet, Indonesia, precisely in Banyumas Regency, Baturraden District. Tourists who visit every year are increasing but tour managers have not realized whether the tourists are satisfied or not so research is needed to measure the level of satisfaction of tourists so that the Baturraden tourism is better. To measure the level of satisfaction, an algorithm is needed, in this study the algorithm used is a support vector machine (SVM) to collect data that will be used as a dataset by taking reviews on google maps manually then the data is grouped into groups of satisfied and dissatisfied tourists, as many as 100 data are taken and processed. So that the final result obtained an accuracy value of 86.00%, and for reviews tend to be positive or satisfied tourists visiting the baturaden tourist area.References
N. Made Rai Kristina, I. Gusti Ketut Indra Pranata Darma, H. Ratnaningtyas, F. Dharma Duta, I. Hindu Dharma Negeri Denpasar, and S. Tinggi Pariwisata Trisakti, “Pengelolaan Timbulan Sampah Untuk Menjaga Citra Industri Pariwisata Pada Daya Tarik Wisata di Bali,” 2020.
S. Paludi, “Equilibrium: Jurnal Penelitian Pendidikan dan Ekonomi SETAHUN PANDEMI COVID-19 DAN DAMPAKNYA TERHADAP INDUSTRI PARIWISATA INDONESIA,” vol. 19, p. 1, 2022, [Online]. Available: https://journal.uniku.ac.id/index.php/Equilibrium
Y. Shambodo, “Revolusi Industri 4.0: Googelisasi Industri Pariwisata dan Industri Kreatif,” Journal of Tourism and Creativity, vol. 4, no. 1, 2020.
J. Sosiologi et al., “SITUS LEMAH WANGI: REPRESENTASI RELIGIUSITAS DAN WISATA RELIGI DI DUSUN KALIPAGU, DESA KETENGER, KECAMATAN BATURRADEN, KABUPATEN BANYUMAS,” 2023.
I. Kurniawan et al., “Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 10, no. 1, 2023, [Online]. Available: http://jurnal.mdp.ac.id
H. Sujadi, “ANALISIS SENTIMEN PENGGUNA MEDIA SOSIAL TWITTER TERHADAP WABAH COVID-19 DENGAN METODE NAIVE BAYES CLASSIFIER DAN SUPPORT VECTOR MACHINE,” INFOTECH journal, vol. 8, no. 1, pp. 22–27, Mar. 2022, doi: 10.31949/infotech.v8i1.1883.
N. Fitriyah, B. Warsito, D. Asih, and I. Maruddani, “ANALISIS SENTIMEN GOJEK PADA MEDIA SOSIAL TWITTER DENGAN KLASIFIKASI SUPPORT VECTOR MACHINE (SVM),” JURNAL GAUSSIAN, vol. 9, no. 3, pp. 376–390, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
M. R. Fahlevvi, “Analisis Sentimen Terhadap Ulasan Aplikasi Pejabat Pengelola Informasi dan Dokumentasi Kementerian Dalam Negeri Republik Indonesia di Google Playstore Menggunakan Metode Support Vector Machine,” Jurnal Teknologi dan Komunikasi Pemerintahan, vol. 4, no. 1, pp. 1–13, 2022, [Online]. Available: http://ejournal.ipdn.ac.id/JTKP,
H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, Feb. 2021, doi: 10.34148/teknika.v10i1.311.
D. Darwis, E. Shintya Pratiwi, A. Ferico, and O. Pasaribu, “PENERAPAN ALGORITMA SVM UNTUK ANALISIS SENTIMEN PADA DATA TWITTER KOMISI PEMBERANTASAN KORUPSI REPUBLIK INDONESIA,” 2020.
S. Rahma Yustihan and P. Pandu Adikara, “Analisis Sentimen berbasis Aspek terhadap Data Ulasan Rumah Makan menggunakan Metode Support Vector Machine (SVM),” 2021. [Online]. Available: http://j-ptiik.ub.ac.id
E. A. Firdaus, S. Maulani, A. B. Dharmawan, A. Keperwatan, and R. S. Dustira Cimahi, “PENGUKURAN MINAT BACA MAHASISWA DENGAN METODE CLUSTERING DI PERPUSTAKAAN AKADEMI KEPERAWATAN RS.DUSTIRA CIMAHI MENGGUNAKAN DATA MINING,” vol. 15, no. 1, 2021, [Online]. Available: https://journal.uniku.ac.id/index.php/ilkom
E. Mariati and A. Lestari, “MODEL KLASIFIKASI KEPUASAN MAHASISWA TEKNIK TERHADAP SARANA PEMBELAJARAN MENGGUNAKAN DATA MINING”, doi: 10.47111/JTI.
R. Saputra and A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,” 2020. [Online]. Available: http://jurnal.mdp.ac.id
L. Suriani, “Pengelompokan Data Kriminal Pada Poldasu Menentukan Pola Daerah Rawan Tindak Kriminal Menggunakan Data Mining Algoritma K-Means Clustering,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 1, no. 2, p. 151, Jan. 2020, doi: 10.30865/json.v1i2.1955.
R. Takdirillah, “Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan,” Edumatic : Jurnal Pendidikan Informatika, vol. 4, no. 1, pp. 37–46, Jun. 2020, doi: 10.29408/edumatic.v4i1.2081.
Y. A. Singgalen, “Analisis Sentimen Top 10 Traveler Ranked Hotel di Kota Makassar Menggunakan Algoritma Decision Tree dan Support Vector Machine,” Media Online), vol. 4, no. 1, pp. 323–332, 2023, doi: 10.30865/klik.v4i1.1153.
R. Noviana and I. Rasal B A Jurusan, “PENERAPAN ALGORITMA NAIVE BAYES DAN SVM UNTUK ANALISIS SENTIMEN BOY BAND BTS PADA MEDIA SOSIAL TWITTER,” JTS, vol. 2, no. 2, 2023
B. Rahmatullah, Pungkas Budiyono, Suwanda, and A. Saputra, “SENTIMEN ANALISIS TRANSPORTASI ONLINE MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE, NAIVE BAYES DAN KNN,” Jurnal Ilmu Komputer JIK, 2021, [Online]. Available: https://t.co/ZYbdHbWj5
O. Herdiana, S. Maulani, E. A. Firdaus, and K. Kunci, “STRATEGI PEMASARAN PRODUK INDUSTRI KREATIF MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING BERBASIS PARTICLE SWARM OPTIMIZATION,” vol. 15, 2021, [Online]. Available: https://journal.uniku.ac.id/index.php/ilkom
N. Arifin, U. Enri, and N. Sulistiyowati, “STRING (Satuan Tulisan Riset dan Inovasi Teknologi) PENERAPAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) DENGAN TF-IDF N-GRAM UNTUK TEXT CLASSIFICATION.” Vol. 6 No. 2 Desember 2021
F. Meila Azzahra Sofyan, A. Putri Riyandoro, D. Fitriani Maulana, J. Haerul Jaman, S. Informasi, and U. Singaperbangsa Karawang, “Volume 6 , Nomor 2,” Juli, 2023, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jsk/index
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).